ﻻ يوجد ملخص باللغة العربية
Facial attributes (e.g., age and attractiveness) estimation performance has been greatly improved by using convolutional neural networks. However, existing methods have an inconsistency between the training objectives and the evaluation metric, so they may be suboptimal. In addition, these methods always adopt image classification or face recognition models with a large amount of parameters, which carry expensive computation cost and storage overhead. In this paper, we firstly analyze the essential relationship between two state-of-the-art methods (Ranking-CNN and DLDL) and show that the Ranking method is in fact learning label distribution implicitly. This result thus firstly unifies two existing popular state-of-the-art methods into the DLDL framework. Second, in order to alleviate the inconsistency and reduce resource consumption, we design a lightweight network architecture and propose a unified framework which can jointly learn facial attribute distribution and regress attribute value. The effectiveness of our approach has been demonstrated on both facial age and attractiveness estimation tasks. Our method achieves new state-of-the-art results using the single model with 36$times$(6$times$) fewer parameters and 2.6$times$(2.1$times$) faster inference speed on facial age (attractiveness) estimation. Moreover, our method can achieve comparable results as the state-of-the-art even though the number of parameters is further reduced to 0.9M (3.8MB disk storage).
Achieving high performance for facial age estimation with subjects in the borderline between adulthood and non-adulthood has always been a challenge. Several studies have used different approaches from the age of a baby to an elder adult and differen
Human face aging is irreversible process causing changes in human face characteristics such us hair whitening, muscles drop and wrinkles. Due to the importance of human face aging in biometrics systems, age estimation became an attractive area for re
We propose a generative framework based on generative adversarial network (GAN) to enhance facial attractiveness while preserving facial identity and high-fidelity. Given a portrait image as input, having applied gradient descent to recover a latent
Bone age assessment (BAA) is clinically important as it can be used to diagnose endocrine and metabolic disorders during child development. Existing deep learning based methods for classifying bone age use the global image as input, or exploit local
Image-based age estimation aims to predict a persons age from facial images. It is used in a variety of real-world applications. Although end-to-end deep models have achieved impressive results for age estimation on benchmark datasets, their performa