ﻻ يوجد ملخص باللغة العربية
We present a novel explicit shape representation for instance segmentation. Based on how to model the object shape, current instance segmentation systems can be divided into two categories, implicit and explicit models. The implicit methods, which represent the object mask/contour by intractable network parameters, and produce it through pixel-wise classification, are predominant. However, the explicit methods, which parameterize the shape with simple and explainable models, are less explored. Since the operations to generate the final shape are light-weighted, the explicit methods have a clear speed advantage over implicit methods, which is crucial for real-world applications. The proposed USD-Seg adopts a linear model, sparse coding with dictionary, for object shapes. First, it learns a dictionary from a large collection of shape datasets, making any shape being able to be decomposed into a linear combination through the dictionary. Hence the name Universal Shape Dictionary. Then it adds a simple shape vector regression head to ordinary object detector, giving the detector segmentation ability with minimal overhead. For quantitative evaluation, we use both average precision (AP) and the proposed Efficiency of AP (AP$_E$) metric, which intends to also measure the computational consumption of the framework to cater to the requirements of real-world applications. We report experimental results on the challenging COCO dataset, in which our single model on a single Titan Xp GPU achieves 35.8 AP and 27.8 AP$_E$ at 65 fps with YOLOv4 as base detector, 34.1 AP and 28.6 AP$_E$ at 12 fps with FCOS as base detector.
Blastomere instance segmentation is important for analyzing embryos abnormality. To measure the accurate shapes and sizes of blastomeres, their amodal segmentation is necessary. Amodal instance segmentation aims to recover the complete silhouette of
In this paper, we propose a novel top-down instance segmentation framework based on explicit shape encoding, named textbf{ESE-Seg}. It largely reduces the computational consumption of the instance segmentation by explicitly decoding the multiple obje
Panoptic segmentation requires segments of both things (countable object instances) and stuff (uncountable and amorphous regions) within a single output. A common approach involves the fusion of instance segmentation (for things) and semantic segment
Direct contour regression for instance segmentation is a challenging task. Previous works usually achieve it by learning to progressively refine the contour prediction or adopting a shape representation with limited expressiveness. In this work, we a
Modeling temporal visual context across frames is critical for video instance segmentation (VIS) and other video understanding tasks. In this paper, we propose a fast online VIS model named CrossVIS. For temporal information modeling in VIS, we prese