ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental and Computational Studies of the Optical Properties of CuAl1-xFexO2

99   0   0.0 ( 0 )
 نشر من قبل Mina Aziziha
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Delafossites are promising candidates for photocatalysis applications because of their chemical stability and absorption in the solar region of the electromagnetic spectrum. For example, CuAlO2 has good chemical stability but has a large indirect bandgap (~3 eV), so that efforts to improve its absorption in the solar region through alloying are investigated. The effect of dilute alloying on the optical absorption of powdered CuAl1-xFexO2 (x = 0.0-1.0) is measured and compared to electronic band structures calculations using a generalized gradient approximation with Hubbard exchange-correlation parameter and spin. A new absorption feature is observed at 1.8 eV for x = 0.01, which redshifts to 1.4 eV for x = 0.10. This feature is associated with transitions from the L-point valence band maximum to the Fe-3d state that appears below the conduction band of the spin-down band structure. The feature increases the optical absorption below the bandgap of pure CuAlO2, making dilute CuAl1-xFexO2 alloys better suited for solar photocatalysis.

قيم البحث

اقرأ أيضاً

We simulate the optical and electrical responses in gallium-doped graphene. Using density functional theory with a local density approximation, we simlutate the electronic band structure and show the effects of impurity doping (0-3.91%) in graphene o n the electron density, refractive index, optical conductivity, and extinction coefficient for each doping percentages. Here, gallium atoms are placed randomly (using a 5-point average) throughout a 128-atom sheet of graphene. These calculations demonstrate the effects of hole doping due to direct atomic substitution, where it is found that a disruption in the electronic structure and electron density for small doping levels is due to impurity scattering of the electrons. However, the system continues to produce metallic or semi-metallic behavior with increasing doping levels. These calculations are compared to a purely theoretical 100% Ga sheet for comparison of conductivity. Furthermore, we examine the change in the electronic band structure, where the introduction of gallium electronic bands produces a shift in the electron bands and dissolves the characteristic Dirac cone within graphene, which leads to better electron mobility.
Crystallization is one of the most important phase transformations of first order. In the case of metals and alloys, the liquid phase is the parent phase of materials production. The conditions of the crystallization process control the as-solidified material in its chemical and physical properties. Nucleation initiates the crystallization of a liquid. It selects the crystallographic phase, stable or meta-stable. Its detailed knowledge is therefore mandatory for the design of materials. We present techniques of containerless processing for nucleation studies of metals and alloys. We demonstrate the power of these methods for crystal nucleation of stable solids but in particular also for investigations of crystal nucleation of metastable solids at extreme undercooling. This concerns the issue of heterogeneous versus homogeneous nucleation and non-equilibrium conditions. The results are analyzed within classical nucleation theory, where the activation energy of homogeneous nucleation depends on the interfacial energy and the difference of Gibbs free energies of solid and liquid. The interfacial energy acts as barrier for the nucleation process. Its experimental determination is difficult in the case of metals. In the second part of this work we therefore explore the use of colloidal suspensions as models for the crystallization process. Their nucleation process is observed in situ by optical techniques and ultra-small angle X-ray diffraction using high intensity synchrotron radiation. It allows an unambiguous discrimination of homogeneous and heterogeneous nucleation as well as the determination of the interfacial free energy of the solid-liquid interface. Our results are used to construct Turnbull plots of colloids, which are discussed in relation to Turnbull plots of metals and support the hypothesis that colloids are useful model systems to investigate crystal nucleation.
During the past five years the low temperature heat capacity of simple semiconductors and insulators has received renewed attention. Of particular interest has been its dependence on isotopic masses and the effect of spin- orbit coupling in ab initio calculations. Here we concentrate on the lead chalcogenides PbS, PbSe and PbTe. These materials, with rock salt structure, have different natural isotopes for both cations and anions, a fact that allows a systematic experimental and theoretical study of isotopic effects e.g. on the specific heat. Also, the large spin-orbit splitting of the 6p electrons of Pb and the 5p of Te allows, using a computer code which includes spin-orbit interaction, an investigation of the effect of this interaction on the phonon dispersion relations and the temperature dependence of the specific heat and on the lattice parameter. It is shown that agreement between measurements and calculations significantly improves when spin-orbit interaction is included.
Elastin is a structural protein with outstanding mechanical properties (e.g., elasticity and resilience) and biologically relevant functions (e.g., triggering responses like cell adhesion or chemotaxis). It is formed from its precursor tropoelastin, a 60-72 kDa water-soluble and temperature-responsive protein that coacervates at physiological temperature, undergoing a phenomenon termed lower critical solution temperature (LCST). Inspired by this behaviour, many scientists and engineers are developing recombinantly produced elastin-inspired biopolymers, usually termed elastin-like polypeptides (ELPs). These ELPs are generally comprised of repetitive motifs with the sequence VPGXG, which corresponds to repeats of a small part of the tropoelastin sequence, X being any amino acid except proline. ELPs display LCST and mechanical properties similar to tropoelastin, which renders them promising candidates for the development of elastic and stimuli-responsive protein-based materials. Unveiling the structure-property relationships of ELPs can aid in the development of these materials by establishing the connections between the ELP amino acid sequence and the macroscopic properties of the materials. Here we present a review of the structure-property relationships of ELPs and ELP-based materials, with a focus on LCST and mechanical properties and how experimental and computational studies have aided in their understanding.
Co-based nanostructures ranging from core-shell to hollow nanoparticles were produced by varying the reaction time and the chemical environment during the thermal decomposition of Co2(CO)8. Both structural characterization and kinetic model simulatio n illustrate that the diffusivities of Co and oxygen determine the growth ratio and the final morphology of the nanoparticles. Exchange coupling between Co and Co-oxide in core/shell nanoparticles induced a shift of field-cooled hysteresis loops that is proportional to the shell thickness, as verified by numerical studies. The increased nanocomplexity when going from core/shell to hollow particles, also leads to the appearance of hysteresis above 300 K due to an enhancement of the surface anisotropy resulting from the additional spin-disordered surfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا