ﻻ يوجد ملخص باللغة العربية
We use an array of transition-edge sensors, cryogenic microcalorimeters with 4 eV energy resolution, to measure L x-ray emission-line profiles of four elements of the lanthanide series: praseodymium, neodymium, terbium, and holmium. The spectrometer also surveys numerous x-ray standards in order to establish an absolute-energy calibration traceable to the International System of Units for the energy range 4 keV to 10 keV. The new results include emission line profiles for 97 lines, each expressed as a sum of one or more Voigt functions; improved absolute energy uncertainty on 71 of these lines relative to existing reference data; a median uncertainty on the peak energy of 0.24 eV, four to ten times better than the median of prior work; and 6 lines that lack any measured values in existing reference tables. The 97 lines comprise nearly all of the most intense L lines from these elements under broad-band x-ray excitation. The work improves on previous measurements made with a similar cryogenic spectrometer by the use of sensors with better linearity in the absorbed energy and a gold x-ray absorbing layer that has a Gaussian energy-response function. It also employs a novel sample holder that enables rapid switching between science targets and calibration targets with excellent gain balancing. Most of the results for peak energy values shown here should be considered as replacements for the currently tabulated standard reference values, while the line shapes given here represent a significant expansion of the scope of available reference data.
We introduce a new technique for determining x-ray fluorescence line energies and widths, and we present measurements made with this technique of 22 x-ray L lines from lanthanide-series elements. The technique uses arrays of transition-edge sensors,
This paper presents an absolute X-ray photon energy measurement method that uses a Bond diffractometer. The proposed system enables the prompt and rapid in-situ measurement of photon energies in a wide energy range. The diffractometer uses a referenc
Photoabsorption by and fluorescence of the K{alpha} transitions in highly charged iron ions are essential mechanisms for X-ray radiation transfer in astrophysical environments. We study photoabsorption due to the main K{alpha} transitions in highly c
A spectrometer for resonant inelastic X-ray scattering (RIXS) is proposed where imaging and dispersion actions in two orthogonal planes are combined to deliver full two-dimensional map of RIXS intensity in one shot with parallel detection in incoming
The QED contribution to the energies of the circular (n,l=n-1), 2 ≤ n ≤ 19 transitions have been calculated for several kaonic atoms throughout the periodic table, using the current world average kaon mass. Calculations were done in the f