ﻻ يوجد ملخص باللغة العربية
We introduce a new technique for determining x-ray fluorescence line energies and widths, and we present measurements made with this technique of 22 x-ray L lines from lanthanide-series elements. The technique uses arrays of transition-edge sensors, microcalorimeters with high energy-resolving power that simultaneously observe both calibrated x-ray standards and the x-ray emission lines under study. The uncertainty in absolute line energies is generally less than 0.4 eV in the energy range of 4.5 keV to 7.5 keV. Of the seventeen line energies of neodymium, samarium, and holmium, thirteen are found to be consistent with the available x-ray reference data measured after 1990; only two of the four lines for which reference data predate 1980, however, are consistent with our results. Five lines of terbium are measured with uncertainties that improve on those of existing data by factors of two or more. These results eliminate a significant discrepancy between measured and calculated x-ray line energies for the terbium Ll line (5.551 keV). The line widths are also measured, with uncertainties of 0.6 eV or less on the full-width at half-maximum in most cases. These measurements were made with an array of approximately one hundred superconducting x- ray microcalorimeters, each sensitive to an energy band from 1 keV to 8 keV. No energy-dispersive spectrometer has previously been used for absolute-energy estimation at this level of accuracy. Future spectrometers, with superior linearity and energy resolution, will allow us to improve on these results and expand the measurements to more elements and a wider range of line energies.
We use an array of transition-edge sensors, cryogenic microcalorimeters with 4 eV energy resolution, to measure L x-ray emission-line profiles of four elements of the lanthanide series: praseodymium, neodymium, terbium, and holmium. The spectrometer
This paper presents an absolute X-ray photon energy measurement method that uses a Bond diffractometer. The proposed system enables the prompt and rapid in-situ measurement of photon energies in a wide energy range. The diffractometer uses a referenc
Quasi-simultaneous arrival (QSA) effects in secondary ion mass spectrometry can create mass-indepedent inaccuracies in isotope measurements when using electron multiplier detectors (EMs). The simple Poisson statistical model of QSA does not explain m
A performance evaluation of superconducting transition-edge sensors (TESs) in the environment of a pion beam line at a particle accelerator is presented. Averaged across the 209 functioning sensors in the array, the achieved energy resolution is 5.2
Nanoelectromechanical Systems (NEMS) are among the best candidates to measure interactions at nanoscale [1-6], especially when resonating oscillators are used with high quality factor [7, 8]. Despite many efforts [9, 10], efficient and easy actuation