ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised Deep Video Denoising

105   0   0.0 ( 0 )
 نشر من قبل Dev Yashpal Sheth
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep convolutional neural networks (CNNs) for video denoising are typically trained with supervision, assuming the availability of clean videos. However, in many applications, such as microscopy, noiseless videos are not available. To address this, we propose an Unsupervised Deep Video Denoiser (UDVD), a CNN architecture designed to be trained exclusively with noisy data. The performance of UDVD is comparable to the supervised state-of-the-art, even when trained only on a single short noisy video. We demonstrate the promise of our approach in real-world imaging applications by denoising raw video, fluorescence-microscopy and electron-microscopy data. In contrast to many current approaches to video denoising, UDVD does not require explicit motion compensation. This is advantageous because motion compensation is computationally expensive, and can be unreliable when the input data are noisy. A gradient-based analysis reveals that UDVD automatically adapts to local motion in the input noisy videos. Thus, the network learns to perform implicit motion compensation, even though it is only trained for denoising.

قيم البحث

اقرأ أيضاً

Image denoising is often empowered by accurate prior information. In recent years, data-driven neural network priors have shown promising performance for RGB natural image denoising. Compared to classic handcrafted priors (e.g., sparsity and total va riation), the deep priors are learned using a large number of training samples -- which can accurately model the complex image generating process. However, data-driven priors are hard to acquire for hyperspectral images (HSIs) due to the lack of training data. A remedy is to use the so-called unsupervised deep image prior (DIP). Under the unsupervised DIP framework, it is hypothesized and empirically demonstrated that proper neural network structures are reasonable priors of certain types of images, and the network weights can be learned without training data. Nonetheless, the most effective unsupervised DIP structures were proposed for natural images instead of HSIs. The performance of unsupervised DIP-based HSI denoising is limited by a couple of serious challenges, namely, network structure design and network complexity. This work puts forth an unsupervised DIP framework that is based on the classic spatio-spectral decomposition of HSIs. Utilizing the so-called linear mixture model of HSIs, two types of unsupervised DIPs, i.e., U-Net-like network and fully-connected networks, are employed to model the abundance maps and endmembers contained in the HSIs, respectively. This way, empirically validated unsupervised DIP structures for natural images can be easily incorporated for HSI denoising. Besides, the decomposition also substantially reduces network complexity. An efficient alternating optimization algorithm is proposed to handle the formulated denoising problem. Semi-real and real data experiments are employed to showcase the effectiveness of the proposed approach.
Multi-spectral satellite imaging sensors acquire various spectral band images such as red (R), green (G), blue (B), near-infrared (N), etc. Thanks to the unique spectroscopic property of each spectral band with respective to the objects on the ground , multi-spectral satellite imagery can be used for various geological survey applications. Unfortunately, image artifacts from imaging sensor noises often affect the quality of scenes and have negative impacts on the applications of satellite imagery. Recently, deep learning approaches have been extensively explored for the removal of noises in satellite imagery. Most deep learning denoising methods, however, follow a supervised learning scheme, which requires matched noisy image and clean image pairs that are difficult to collect in real situations. In this paper, we propose a novel unsupervised multispectral denoising method for satellite imagery using wavelet subband cycle-consistent adversarial network (WavCycleGAN). The proposed method is based on unsupervised learning scheme using adversarial loss and cycle-consistency loss to overcome the lack of paired data. Moreover, in contrast to the standard image domain cycleGAN, we introduce a wavelet subband domain learning scheme for effective denoising without sacrificing high frequency components such as edges and detail information. Experimental results for the removal of vertical stripe and wave noises in satellite imaging sensors demonstrate that the proposed method effectively removes noises and preserves important high frequency features of satellite images.
104 - Huanjing Yue , Cong Cao , Lei Liao 2020
In recent years, the supervised learning strategy for real noisy image denoising has been emerging and has achieved promising results. In contrast, realistic noise removal for raw noisy videos is rarely studied due to the lack of noisy-clean pairs fo r dynamic scenes. Clean video frames for dynamic scenes cannot be captured with a long-exposure shutter or averaging multi-shots as was done for static images. In this paper, we solve this problem by creating motions for controllable objects, such as toys, and capturing each static moment for multiple times to generate clean video frames. In this way, we construct a dataset with 55 groups of noisy-clean videos with ISO values ranging from 1600 to 25600. To our knowledge, this is the first dynamic video dataset with noisy-clean pairs. Correspondingly, we propose a raw video denoising network (RViDeNet) by exploring the temporal, spatial, and channel correlations of video frames. Since the raw video has Bayer patterns, we pack it into four sub-sequences, i.e RGBG sequences, which are denoised by the proposed RViDeNet separately and finally fused into a clean video. In addition, our network not only outputs a raw denoising result, but also the sRGB result by going through an image signal processing (ISP) module, which enables users to generate the sRGB result with their favourite ISPs. Experimental results demonstrate that our method outperforms state-of-the-art video and raw image denoising algorithms on both indoor and outdoor videos.
Recovering a high-quality image from noisy indirect measurements is an important problem with many applications. For such inverse problems, supervised deep convolutional neural network (CNN)-based denoising methods have shown strong results, but the success of these supervised methods critically depends on the availability of a high-quality training dataset of similar measurements. For image denoising, methods are available that enable training without a separate training dataset by assuming that the noise in two different pixels is uncorrelated. However, this assumption does not hold for inverse problems, resulting in artifacts in the denoised images produced by existing methods. Here, we propose Noise2Inverse, a deep CNN-based denoising method for linear image reconstruction algorithms that does not require any additional clean or noisy data. Training a CNN-based denoiser is enabled by exploiting the noise model to compute multiple statistically independent reconstructions. We develop a theoretical framework which shows that such training indeed obtains a denoising CNN, assuming the measured noise is element-wise independent and zero-mean. On simulated CT datasets, Noise2Inverse demonstrates an improvement in peak signal-to-noise ratio and structural similarity index compared to state-of-the-art image denoising methods and conventional reconstruction methods, such as Total-Variation Minimization. We also demonstrate that the method is able to significantly reduce noise in challenging real-world experimental datasets.
Recently, deep learning approaches have become the main research frontier for biological image reconstruction problems thanks to their high performance, along with their ultra-fast reconstruction times. However, due to the difficulty of obtaining mat ched reference data for supervised learning, there has been increasing interest in unsupervised learning approaches that do not need paired reference data. In particular, self-supervised learning and generative models have been successfully used for various biological imaging applications. In this paper, we overview these approaches from a coherent perspective in the context of classical inverse problems, and discuss their applications to biological imaging.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا