ترغب بنشر مسار تعليمي؟ اضغط هنا

Transformer-Transducers for Code-Switched Speech Recognition

364   0   0.0 ( 0 )
 نشر من قبل Siddharth Dalmia
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We live in a world where 60% of the population can speak two or more languages fluently. Members of these communities constantly switch between languages when having a conversation. As automatic speech recognition (ASR) systems are being deployed to the real-world, there is a need for practical systems that can handle multiple languages both within an utterance or across utterances. In this paper, we present an end-to-end ASR system using a transformer-transducer model architecture for code-switched speech recognition. We propose three modifications over the vanilla model in order to handle various aspects of code-switching. First, we introduce two auxiliary loss functions to handle the low-resource scenario of code-switching. Second, we propose a novel mask-based training strategy with language ID information to improve the label encoder training towards intra-sentential code-switching. Finally, we propose a multi-label/multi-audio encoder structure to leverage the vast monolingual speech corpora towards code-switching. We demonstrate the efficacy of our proposed approaches on the SEAME dataset, a public Mandarin-English code-switching corpus, achieving a mixed error rate of 18.5% and 26.3% on test_man and test_sge sets respectively.



قيم البحث

اقرأ أيضاً

137 - Chenpeng Du , Hao Li , Yizhou Lu 2020
Training a code-switching end-to-end automatic speech recognition (ASR) model normally requires a large amount of data, while code-switching data is often limited. In this paper, three novel approaches are proposed for code-switching data augmentatio n. Specifically, they are audio splicing with the existing code-switching data, and TTS with new code-switching texts generated by word translation or word insertion. Our experiments on 200 hours Mandarin-English code-switching dataset show that all the three proposed approaches yield significant improvements on code-switching ASR individually. Moreover, all the proposed approaches can be combined with recent popular SpecAugment, and an addition gain can be obtained. WER is significantly reduced by relative 24.0% compared to the system without any data augmentation, and still relative 13.0% gain compared to the system with only SpecAugment
Code-switching speech recognition has attracted an increasing interest recently, but the need for expert linguistic knowledge has always been a big issue. End-to-end automatic speech recognition (ASR) simplifies the building of ASR systems considerab ly by predicting graphemes or characters directly from acoustic input. In the mean time, the need of expert linguistic knowledge is also eliminated, which makes it an attractive choice for code-switching ASR. This paper presents a hybrid CTC-Attention based end-to-end Mandarin-English code-switching (CS) speech recognition system and studies the effect of hybrid CTC-Attention based models, different modeling units, the inclusion of language identification and different decoding strategies on the task of code-switching ASR. On the SEAME corpus, our system achieves a mixed error rate (MER) of 34.24%.
363 - Xie Chen , Yu Wu , Zhenghao Wang 2020
Recently, Transformer based end-to-end models have achieved great success in many areas including speech recognition. However, compared to LSTM models, the heavy computational cost of the Transformer during inference is a key issue to prevent their a pplications. In this work, we explored the potential of Transformer Transducer (T-T) models for the fist pass decoding with low latency and fast speed on a large-scale dataset. We combine the idea of Transformer-XL and chunk-wise streaming processing to design a streamable Transformer Transducer model. We demonstrate that T-T outperforms the hybrid model, RNN Transducer (RNN-T), and streamable Transformer attention-based encoder-decoder model in the streaming scenario. Furthermore, the runtime cost and latency can be optimized with a relatively small look-ahead.
Modeling code-switched speech is an important problem in automatic speech recognition (ASR). Labeled code-switched data are rare, so monolingual data are often used to model code-switched speech. These monolingual data may be more closely matched to one of the languages in the code-switch pair. We show that such asymmetry can bias prediction toward the better-matched language and degrade overall model performance. To address this issue, we propose a semi-supervised approach for code-switched ASR. We consider the case of English-Mandarin code-switching, and the problem of using monolingual data to build bilingual transcription models for annotation of unlabeled code-switched data. We first build multiple transcription models so that their individual predictions are variously biased toward either English or Mandarin. We then combine these biased transcriptions using confidence-based selection. This strategy generates a superior transcript for semi-supervised training, and obtains a 19% relative improvement compared to a semi-supervised system that relies on a transcription model built with only the best-matched monolingual data.
Recently, there has been significant progress made in Automatic Speech Recognition (ASR) of code-switched speech, leading to gains in accuracy on code-switched datasets in many language pairs. Code-switched speech co-occurs with monolingual speech in one or both languages being mixed. In this work, we show that fine-tuning ASR models on code-switched speech harms performance on monolingual speech. We point out the need to optimize models for code-switching while also ensuring that monolingual performance is not sacrificed. Monolingual models may be trained on thousands of hours of speech which may not be available for re-training a new model. We propose using the Learning Without Forgetting (LWF) framework for code-switched ASR when we only have access to a monolingual model and do not have the data it was trained on. We show that it is possible to train models using this framework that perform well on both code-switched and monolingual test sets. In cases where we have access to monolingual training data as well, we propose regularization strategies for fine-tuning models for code-switching without sacrificing monolingual accuracy. We report improvements in Word Error Rate (WER) in monolingual and code-switched test sets compared to baselines that use pooled data and simple fine-tuning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا