ﻻ يوجد ملخص باللغة العربية
Code-switching speech recognition has attracted an increasing interest recently, but the need for expert linguistic knowledge has always been a big issue. End-to-end automatic speech recognition (ASR) simplifies the building of ASR systems considerably by predicting graphemes or characters directly from acoustic input. In the mean time, the need of expert linguistic knowledge is also eliminated, which makes it an attractive choice for code-switching ASR. This paper presents a hybrid CTC-Attention based end-to-end Mandarin-English code-switching (CS) speech recognition system and studies the effect of hybrid CTC-Attention based models, different modeling units, the inclusion of language identification and different decoding strategies on the task of code-switching ASR. On the SEAME corpus, our system achieves a mixed error rate (MER) of 34.24%.
Training a code-switching end-to-end automatic speech recognition (ASR) model normally requires a large amount of data, while code-switching data is often limited. In this paper, three novel approaches are proposed for code-switching data augmentatio
Code-switching (CS) refers to a linguistic phenomenon where a speaker uses different languages in an utterance or between alternating utterances. In this work, we study end-to-end (E2E) approaches to the Mandarin-English code-switching speech recogni
Despite the significant progress in end-to-end (E2E) automatic speech recognition (ASR), E2E ASR for low resourced code-switching (CS) speech has not been well studied. In this work, we describe an E2E ASR pipeline for the recognition of CS speech in
Building speech recognizers in multiple languages typically involves replicating a monolingual training recipe for each language, or utilizing a multi-task learning approach where models for different languages have separate output labels but share s
The lack of code-switch training data is one of the major concerns in the development of end-to-end code-switching automatic speech recognition (ASR) models. In this work, we propose a method to train an improved end-to-end code-switching ASR using o