ترغب بنشر مسار تعليمي؟ اضغط هنا

Body-attitude alignment: first order phase transition, link with rodlike polymers through quaternions, and stability

119   0   0.0 ( 0 )
 نشر من قبل Amic Frouvelle
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Amic Frouvelle




اسأل ChatGPT حول البحث

We present a simple model of alignment of a large number of rigid bodies (modeled by rotation matrices) subject to internal rotational noise. The numerical simulations exhibit a phenomenon of first order phase transition with respect the alignment intensity, with abrupt transition at two thresholds. Below the first threshold, the system is disordered in large time: the rotation matrices are uniformly distributed. Above the second threshold, the long time behaviour of the system is to concentrate around a given rotation matrix. When the intensity is between the two thresholds, both situations may occur. We then study the mean-field limit of this model, as the number of particles tends to infinity, which takes the form of a nonlinear Fokker--Planck equation. We describe the complete classification of the steady states of this equation, which fits with numerical experiments. This classification was obtained in a previous work by Degond, Diez, Merino-Aceituno and the author, thanks to the link between this model and a four-dimensional generalization of the Doi--Onsager equation for suspensions of rodlike polymers interacting through Maier--Saupe potential. This previous study concerned a similar equation of BGK type for which the steady-states were the same. We take advantage of the stability results obtained in this framework, and are able to prove the exponential stability of two families of steady-states: the disordered uniform distribution when the intensity of alignment is less than the second threshold, and a family of non-isotropic steady states (one for each possible rotation matrix, concentrated around it), when the intensity is greater than the first threshold. We also show that the other families of steady-states are unstable, in agreement with the numerical observations.



قيم البحث

اقرأ أيضاً

In this article we investigate the phase transition phenomena that occur in a model of self-organisation through body-attitude coordination. Here, the body-attitude of an agent is modelled by a rotation matrix in $mathbb{R}^3$ as in [Degond, Frouvell e, Merino-Aceituno, 2017]. The starting point of this study is a BGK equation modelling the evolution of the distribution function of the system at a kinetic level. The main novelty of this work is to show that in the spatially homogeneous case, self-organisation may appear or not depending on the local density of agents involved. We first exhibit a connection between body-orientation models and models of nematic alignment of polymers in higher dimensional space from which we deduce the complete description of the possible equilibria Then, thanks to a gradient-flow structure specific to this BGK model, we are able to prove the stability and the convergence towards the equilibria in the different regimes. We then derive the macroscopic models associated to the stable equilibria in the spirit of [Degond, Frouvelle, Merino-Aceituno, 2017] and [Degond, Frouvelle, Liu, 2015].
We provide a complete and rigorous description of phase transitions for kinetic models of self-propelled particles interacting through alignment. These models exhibit a competition between alignment and noise. Both the alignment frequency and noise i ntensity depend on a measure of the local alignment. We show that, in the spatially homogeneous case, the phase transition features (number and nature of equilibria, stability, convergence rate, phase diagram, hysteresis) are totally encoded in how the ratio between the alignment and noise intensities depend on the local alignment. In the spatially inhomogeneous case, we derive the macroscopic models associated to the stable equilibria and classify their hyperbolicity according to the same function.
We study the inverse scattering problem of determining a magnetic field and electric potential from scattering measurements corresponding to finitely many plane waves. The main result shows that the coefficients are uniquely determined by $2n$ measur ements up to a natural gauge. We also show that one can recover the full first order term for a related equation having no gauge invariance, and that it is possible to reduce the number of measurements if the coefficients have certain symmetries. This work extends the fixed angle scattering results of Rakesh and M. Salo to Hamiltonians with first order perturbations, and it is based on wave equation methods and Carleman estimates.
We study a non-local hydrodynamic system with control. First we characterize the control dynamics as a sub-optimal approximation to the optimal control problem constrained to the evolution of the pressureless Euler alignment system. We then discuss t he critical thresholds that leading to global regularity or finite-time blow-up of strong solutions in one and two dimensions. Finally we propose a finite volume scheme for numerical solutions of the controlled system. Several numerical simulations are shown to validate the theoretical and computational results of the paper.
Motivated by a phenomenon of phase transition in a model of alignment of self-propelled particles, we obtain a kinetic mean-field equation which is nothing else than the Doi equation (also called Smoluchowski equation) with dipolar potential. In a se lf-contained article, using only basic tools, we analyze the dynamics of this equation in any dimension. We first prove global well-posedness of this equation, starting with an initial condition in any Sobolev space. We then compute all possible steady-states. There is a threshold for the noise parameter: over this threshold, the only equilibrium is the uniform distribution, and under this threshold, there is also a family of non-isotropic equilibria. We give a rigorous prove of convergence of the solution to a steady-state as time goes to infinity. In particular we show that in the supercritical case, the only initial conditions leading to the uniform distribution in large time are those with vanishing momentum. For any positive value of the noise parameter, and any initial condition, we give rates of convergence towards equilibrium, exponentially for both supercritical and subcritical cases and algebraically for the critical case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا