ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics in a kinetic model of oriented particles with phase transition

130   0   0.0 ( 0 )
 نشر من قبل Amic Frouvelle
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by a phenomenon of phase transition in a model of alignment of self-propelled particles, we obtain a kinetic mean-field equation which is nothing else than the Doi equation (also called Smoluchowski equation) with dipolar potential. In a self-contained article, using only basic tools, we analyze the dynamics of this equation in any dimension. We first prove global well-posedness of this equation, starting with an initial condition in any Sobolev space. We then compute all possible steady-states. There is a threshold for the noise parameter: over this threshold, the only equilibrium is the uniform distribution, and under this threshold, there is also a family of non-isotropic equilibria. We give a rigorous prove of convergence of the solution to a steady-state as time goes to infinity. In particular we show that in the supercritical case, the only initial conditions leading to the uniform distribution in large time are those with vanishing momentum. For any positive value of the noise parameter, and any initial condition, we give rates of convergence towards equilibrium, exponentially for both supercritical and subcritical cases and algebraically for the critical case.



قيم البحث

اقرأ أيضاً

The transformation of a system from one state to another is often mediated by a bottleneck in the systems phase space. In chemistry these bottlenecks are known as emph{transition states} through which the system has to pass in order to evolve from re actants to products. The chemical reactions are usually associated with configurational changes where the reactants and products states correspond, e.g., to two different isomers or the undissociated and dissociated state of a molecule or cluster. In this letter we report on a new type of bottleneck which mediates emph{kinetic} rather than configurational changes. The phase space structures associated with such emph{kinetic transition states} and their dynamical implications are discussed for the rotational vibrational motion of a triatomic molecule. An outline of more general related phase space structures with important dynamical implications is given.
In this article we investigate the phase transition phenomena that occur in a model of self-organisation through body-attitude coordination. Here, the body-attitude of an agent is modelled by a rotation matrix in $mathbb{R}^3$ as in [Degond, Frouvell e, Merino-Aceituno, 2017]. The starting point of this study is a BGK equation modelling the evolution of the distribution function of the system at a kinetic level. The main novelty of this work is to show that in the spatially homogeneous case, self-organisation may appear or not depending on the local density of agents involved. We first exhibit a connection between body-orientation models and models of nematic alignment of polymers in higher dimensional space from which we deduce the complete description of the possible equilibria Then, thanks to a gradient-flow structure specific to this BGK model, we are able to prove the stability and the convergence towards the equilibria in the different regimes. We then derive the macroscopic models associated to the stable equilibria in the spirit of [Degond, Frouvelle, Merino-Aceituno, 2017] and [Degond, Frouvelle, Liu, 2015].
We concentrate on kinetic models for swarming with individuals interacting through self-propelling and friction forces, alignment and noise. We assume that the velocity of each individual relaxes to the mean velocity. In our present case, the equilib ria depend on the density and the orientation of the mean velocity, whereas the mean speed is not anymore a free parameter and a phase transition occurs in the homogeneous kinetic equation. We analyze the profile of equilibria for general potentials identifying a family of potentials leading to phase transitions. Finally, we derive the fluid equations when the interaction frequency becomes very large.
118 - Amic Frouvelle 2020
We present a simple model of alignment of a large number of rigid bodies (modeled by rotation matrices) subject to internal rotational noise. The numerical simulations exhibit a phenomenon of first order phase transition with respect the alignment in tensity, with abrupt transition at two thresholds. Below the first threshold, the system is disordered in large time: the rotation matrices are uniformly distributed. Above the second threshold, the long time behaviour of the system is to concentrate around a given rotation matrix. When the intensity is between the two thresholds, both situations may occur. We then study the mean-field limit of this model, as the number of particles tends to infinity, which takes the form of a nonlinear Fokker--Planck equation. We describe the complete classification of the steady states of this equation, which fits with numerical experiments. This classification was obtained in a previous work by Degond, Diez, Merino-Aceituno and the author, thanks to the link between this model and a four-dimensional generalization of the Doi--Onsager equation for suspensions of rodlike polymers interacting through Maier--Saupe potential. This previous study concerned a similar equation of BGK type for which the steady-states were the same. We take advantage of the stability results obtained in this framework, and are able to prove the exponential stability of two families of steady-states: the disordered uniform distribution when the intensity of alignment is less than the second threshold, and a family of non-isotropic steady states (one for each possible rotation matrix, concentrated around it), when the intensity is greater than the first threshold. We also show that the other families of steady-states are unstable, in agreement with the numerical observations.
175 - Lei Li , Jian-Guo Liu , Pu Yu 2018
In this paper, we consider the mean field limit of Brownian particles with Coulomb interaction in 3D space. In particular, using a symmetrization technique, we show that the limit measure almost surely is a weak solution to the limiting nonlinear Fok ker-Planck equation. By proving that the energy almost surely is bounded by the initial energy, we improve the regularity of the weak solutions. Moreover, by a natural assumption, we establish the weak strong uniqueness principle, which is closely related to the propagation of chaos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا