ﻻ يوجد ملخص باللغة العربية
Multicasting in wireless systems is a natural way to exploit the redundancy in user requests in a Content Centric Network. Power control and optimal scheduling can significantly improve the wireless multicast networks performance under fading. However, the model based approaches for power control and scheduling studied earlier are not scalable to large state space or changing system dynamics. In this paper, we use deep reinforcement learning where we use function approximation of the Q-function via a deep neural network to obtain a power control policy that matches the optimal policy for a small network. We show that power control policy can be learnt for reasonably large systems via this approach. Further we use multi-timescale stochastic optimization to maintain the average power constraint. We demonstrate that a slight modification of the learning algorithm allows tracking of time varying system statistics. Finally, we extend the multi-timescale approach to simultaneously learn the optimal queueing strategy along with power control. We demonstrate scalability, tracking and cross layer optimization capabilities of our algorithms via simulations. The proposed multi-timescale approach can be used in general large state space dynamical systems with multiple objectives and constraints, and may be of independent interest.
We consider a multicast scheme recently proposed for a wireless downlink in [1]. It was shown earlier that power control can significantly improve its performance. However for this system, obtaining optimal power control is intractable because of a v
In this paper, we propose a two-layer framework to learn the optimal handover (HO) controllers in possibly large-scale wireless systems supporting mobile Internet-of-Things (IoT) users or traditional cellular users, where the user mobility patterns c
This work considers the problem of control and resource scheduling in networked systems. We present DIRA, a Deep reinforcement learning based Iterative Resource Allocation algorithm, which is scalable and control-aware. Our algorithm is tailored towa
In many Cyber-Physical Systems, we encounter the problem of remote state estimation of geographically distributed and remote physical processes. This paper studies the scheduling of sensor transmissions to estimate the states of multiple remote, dyna
The problem of quality of service (QoS) and jamming-aware communications is considered in an adversarial wireless network subject to external eavesdropping and jamming attacks. To ensure robust communication against jamming, an interference-aware rou