ترغب بنشر مسار تعليمي؟ اضغط هنا

Scheduling and Power Control for Wireless Multicast Systems via Deep Reinforcement Learning

144   0   0.0 ( 0 )
 نشر من قبل Ramkumar Raghu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multicasting in wireless systems is a natural way to exploit the redundancy in user requests in a Content Centric Network. Power control and optimal scheduling can significantly improve the wireless multicast networks performance under fading. However, the model based approaches for power control and scheduling studied earlier are not scalable to large state space or changing system dynamics. In this paper, we use deep reinforcement learning where we use function approximation of the Q-function via a deep neural network to obtain a power control policy that matches the optimal policy for a small network. We show that power control policy can be learnt for reasonably large systems via this approach. Further we use multi-timescale stochastic optimization to maintain the average power constraint. We demonstrate that a slight modification of the learning algorithm allows tracking of time varying system statistics. Finally, we extend the multi-timescale approach to simultaneously learn the optimal queueing strategy along with power control. We demonstrate scalability, tracking and cross layer optimization capabilities of our algorithms via simulations. The proposed multi-timescale approach can be used in general large state space dynamical systems with multiple objectives and constraints, and may be of independent interest.

قيم البحث

اقرأ أيضاً

We consider a multicast scheme recently proposed for a wireless downlink in [1]. It was shown earlier that power control can significantly improve its performance. However for this system, obtaining optimal power control is intractable because of a v ery large state space. Therefore in this paper we use deep reinforcement learning where we use function approximation of the Q-function via a deep neural network. We show that optimal power control can be learnt for reasonably large systems via this approach. The average power constraint is ensured via a Lagrange multiplier, which is also learnt. Finally, we demonstrate that a slight modification of the learning algorithm allows the optimal control to track the time varying system statistics.
155 - Zhi Wang , Lihua Li , Yue Xu 2018
In this paper, we propose a two-layer framework to learn the optimal handover (HO) controllers in possibly large-scale wireless systems supporting mobile Internet-of-Things (IoT) users or traditional cellular users, where the user mobility patterns c ould be heterogeneous. In particular, our proposed framework first partitions the user equipments (UEs) with different mobility patterns into clusters, where the mobility patterns are similar in the same cluster. Then, within each cluster, an asynchronous multi-user deep reinforcement learning scheme is developed to control the HO processes across the UEs in each cluster, in the goal of lowering the HO rate while ensuring certain system throughput. In this scheme, we use a deep neural network (DNN) as an HO controller learned by each UE via reinforcement learning in a collaborative fashion. Moreover, we use supervised learning in initializing the DNN controller before the execution of reinforcement learning to exploit what we already know with traditional HO schemes and to mitigate the negative effects of random exploration at the initial stage. Furthermore, we show that the adopted global-parameter-based asynchronous framework enables us to train faster with more UEs, which could nicely address the scalability issue to support large systems. Finally, simulation results demonstrate that the proposed framework can achieve better performance than the state-of-art on-line schemes, in terms of HO rates.
This work considers the problem of control and resource scheduling in networked systems. We present DIRA, a Deep reinforcement learning based Iterative Resource Allocation algorithm, which is scalable and control-aware. Our algorithm is tailored towa rds large-scale problems where control and scheduling need to act jointly to optimize performance. DIRA can be used to schedule general time-domain optimization based controllers. In the present work, we focus on control designs based on suitably adapted linear quadratic regulators. We apply our algorithm to networked systems with correlated fading communication channels. Our simulations show that DIRA scales well to large scheduling problems.
In many Cyber-Physical Systems, we encounter the problem of remote state estimation of geographically distributed and remote physical processes. This paper studies the scheduling of sensor transmissions to estimate the states of multiple remote, dyna mic processes. Information from the different sensors have to be transmitted to a central gateway over a wireless network for monitoring purposes, where typically fewer wireless channels are available than there are processes to be monitored. For effective estimation at the gateway, the sensors need to be scheduled appropriately, i.e., at each time instant one needs to decide which sensors have network access and which ones do not. To address this scheduling problem, we formulate an associated Markov decision process (MDP). This MDP is then solved using a Deep Q-Network, a recent deep reinforcement learning algorithm that is at once scalable and model-free. We compare our scheduling algorithm to popular scheduling algorithms such as round-robin and reduced-waiting-time, among others. Our algorithm is shown to significantly outperform these algorithms for many example scenarios.
The problem of quality of service (QoS) and jamming-aware communications is considered in an adversarial wireless network subject to external eavesdropping and jamming attacks. To ensure robust communication against jamming, an interference-aware rou ting protocol is developed that allows nodes to avoid communication holes created by jamming attacks. Then, a distributed cooperation framework, based on deep reinforcement learning, is proposed that allows nodes to assess network conditions and make deep learning-driven, distributed, and real-time decisions on whether to participate in data communications, defend the network against jamming and eavesdropping attacks, or jam other transmissions. The objective is to maximize the network performance that incorporates throughput, energy efficiency, delay, and security metrics. Simulation results show that the proposed jamming-aware routing approach is robust against jamming and when throughput is prioritized, the proposed deep reinforcement learning approach can achieve significant (measured as three-fold) increase in throughput, compared to a benchmark policy with fixed roles assigned to nodes.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا