ﻻ يوجد ملخص باللغة العربية
We use the complexity = action (CA) conjecture to study the full-time dependence of holographic complexity in anisotropic black branes. We find that the time behaviour of holographic complexity of anisotropic systems shares a lot of similarities with the behaviour observed in isotropic systems. In particular, the holographic complexity remains constant for some initial period, and then it starts to change so that the complexity growth rate violates the Lloyds bound at initial times, and approaches this bound from above at later times. Compared with isotropic systems at the same temperature, the anisotropy reduces the initial period in which the complexity is constant and increases the rate of change of complexity. At late times the difference between the isotropic and anisotropic results is proportional to the pressure difference in the transverse and longitudinal directions.
Within the framework of the complexity equals action and complexity equals volume conjectures, we study the properties of holographic complexity for rotating black holes. We focus on a class of odd-dimensional equal-spinning black holes for which con
We discuss the properties of codimension-two branes and compare them to codimension-one branes. In particular, we show that for deficit angle branes the brane energy momentum tensor is uniquely related to integration constants in the bulk solution. W
We present a class of anisotropic brane configurations which shows BKL oscillations near their cosmological singularities. Near horizon limits of these solutions represent Kasner space embedded in AdS background. Dynamical probe branes in these geome
We study holographic subregion complexity, and its possible connection to purification complexity suggested recently by Agon et al. In particular, we study the conjecture that subregion complexity is the purification complexity by considering hologra
Quantum complexity of a thermofield double state in a strongly coupled quantum field theory has been argued to be holographically related to the action evaluated on the Wheeler-DeWitt patch. The growth rate of quantum complexity in systems dual to Ei