ﻻ يوجد ملخص باللغة العربية
Large amounts of data has made neural machine translation (NMT) a big success in recent years. But it is still a challenge if we train these models on small-scale corpora. In this case, the way of using data appears to be more important. Here, we investigate the effective use of training data for low-resource NMT. In particular, we propose a dynamic curriculum learning (DCL) method to reorder training samples in training. Unlike previous work, we do not use a static scoring function for reordering. Instead, the order of training samples is dynamically determined in two ways - loss decline and model competence. This eases training by highlighting easy samples that the current model has enough competence to learn. We test our DCL method in a Transformer-based system. Experimental results show that DCL outperforms several strong baselines on three low-resource machine translation benchmarks and different sized data of WMT 16 En-De.
Current state-of-the-art NMT systems use large neural networks that are not only slow to train, but also often require many heuristics and optimization tricks, such as specialized learning rate schedules and large batch sizes. This is undesirable as
A neural machine translation (NMT) system is expensive to train, especially with high-resource settings. As the NMT architectures become deeper and wider, this issue gets worse and worse. In this paper, we aim to improve the efficiency of training an
Existing curriculum learning approaches to Neural Machine Translation (NMT) require sampling sufficient amounts of easy samples from training data at the early training stage. This is not always achievable for low-resource languages where the amount
In the field of machine learning, the well-trained model is assumed to be able to recover the training labels, i.e. the synthetic labels predicted by the model should be as close to the ground-truth labels as possible. Inspired by this, we propose a
Machine translation systems based on deep neural networks are expensive to train. Curriculum learning aims to address this issue by choosing the order in which samples are presented during training to help train better models faster. We adopt a proba