ﻻ يوجد ملخص باللغة العربية
A neural machine translation (NMT) system is expensive to train, especially with high-resource settings. As the NMT architectures become deeper and wider, this issue gets worse and worse. In this paper, we aim to improve the efficiency of training an NMT by introducing a novel norm-based curriculum learning method. We use the norm (aka length or module) of a word embedding as a measure of 1) the difficulty of the sentence, 2) the competence of the model, and 3) the weight of the sentence. The norm-based sentence difficulty takes the advantages of both linguistically motivated and model-based sentence difficulties. It is easy to determine and contains learning-dependent features. The norm-based model competence makes NMT learn the curriculum in a fully automated way, while the norm-based sentence weight further enhances the learning of the vector representation of the NMT. Experimental results for the WMT14 English-German and WMT17 Chinese-English translation tasks demonstrate that the proposed method outperforms strong baselines in terms of BLEU score (+1.17/+1.56) and training speedup (2.22x/3.33x).
Current state-of-the-art NMT systems use large neural networks that are not only slow to train, but also often require many heuristics and optimization tricks, such as specialized learning rate schedules and large batch sizes. This is undesirable as
Existing curriculum learning approaches to Neural Machine Translation (NMT) require sampling sufficient amounts of easy samples from training data at the early training stage. This is not always achievable for low-resource languages where the amount
Machine translation systems based on deep neural networks are expensive to train. Curriculum learning aims to address this issue by choosing the order in which samples are presented during training to help train better models faster. We adopt a proba
Meta-learning has been sufficiently validated to be beneficial for low-resource neural machine translation (NMT). However, we find that meta-trained NMT fails to improve the translation performance of the domain unseen at the meta-training stage. In
Non-autoregressive translation (NAT) achieves faster inference speed but at the cost of worse accuracy compared with autoregressive translation (AT). Since AT and NAT can share model structure and AT is an easier task than NAT due to the explicit dep