ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamic Consistent Neural Networks for Learning Material Interfacial Mechanics

66   0   0.0 ( 0 )
 نشر من قبل Jiaxin Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For multilayer materials in thin substrate systems, interfacial failure is one of the most challenges. The traction-separation relations (TSR) quantitatively describe the mechanical behavior of a material interface undergoing openings, which is critical to understand and predict interfacial failures under complex loadings. However, existing theoretical models have limitations on enough complexity and flexibility to well learn the real-world TSR from experimental observations. A neural network can fit well along with the loading paths but often fails to obey the laws of physics, due to a lack of experimental data and understanding of the hidden physical mechanism. In this paper, we propose a thermodynamic consistent neural network (TCNN) approach to build a data-driven model of the TSR with sparse experimental data. The TCNN leverages recent advances in physics-informed neural networks (PINN) that encode prior physical information into the loss function and efficiently train the neural networks using automatic differentiation. We investigate three thermodynamic consistent principles, i.e., positive energy dissipation, steepest energy dissipation gradient, and energy conservative loading path. All of them are mathematically formulated and embedded into a neural network model with a novel defined loss function. A real-world experiment demonstrates the superior performance of TCNN, and we find that TCNN provides an accurate prediction of the whole TSR surface and significantly reduces the violated prediction against the laws of physics.

قيم البحث

اقرأ أيضاً

For multilayer structures, interfacial failure is one of the most important elements related to device reliability. For cohesive zone modelling, traction-separation relations represent the adhesive interactions across interfaces. However, existing th eoretical models do not currently capture traction-separation relations that have been extracted using direct methods, particularly under mixed-mode conditions. Given the complexity of the problem, models derived from the neural network approach are attractive. Although they can be trained to fit data along the loading paths taken in a particular set of mixed-mode fracture experiments, they may fail to obey physical laws for paths not covered by the training data sets. In this paper, a thermodynamically consistent neural network (TCNN) approach is established to model the constitutive behavior of interfaces when faced with sparse training data sets. Accordingly, three conditions are examined and implemented here: (i) thermodynamic consistency, (ii) maximum energy dissipation path control and (iii) J-integral conservation. These conditions are treated as constraints and are implemented as such in the loss function. The feasibility of this approach is demonstrated by comparing the modeling results with a range of physical constraints. Moreover, a Bayesian optimization algorithm is then adopted to optimize the weight factors associated with each of the constraints in order to overcome convergence issues that can arise when multiple constraints are present. The resultant numerical implementation of the ideas presented here produced well-behaved, mixed-mode traction separation surfaces that maintained the fidelity of the experimental data that was provided as input. The proposed approach heralds a new autonomous, point-to-point constitutive modeling concept for interface mechanics.
Consumer Debt has risen to be an important problem of modern societies, generating a lot of research in order to understand the nature of consumer indebtness, which so far its modelling has been carried out by statistical models. In this work we show that Computational Intelligence can offer a more holistic approach that is more suitable for the complex relationships an indebtness dataset has and Linear Regression cannot uncover. In particular, as our results show, Neural Networks achieve the best performance in modelling consumer indebtness, especially when they manage to incorporate the significant and experimentally verified results of the Data Mining process in the model, exploiting the flexibility Neural Networks offer in designing their topology. This novel method forms an elaborate framework to model Consumer indebtness that can be extended to any other real world application.
Neurons exhibit complex geometry in their branched networks of neurites which is essential to the function of individual neuron but also brings challenges to transport a wide variety of essential materials throughout their neurite networks for their survival and function. While numerical methods like isogeometric analysis (IGA) have been used for modeling the material transport process via solving partial differential equations (PDEs), they require long computation time and huge computation resources to ensure accurate geometry representation and solution, thus limit their biomedical application. Here we present a graph neural network (GNN)-based deep learning model to learn the IGA-based material transport simulation and provide fast material concentration prediction within neurite networks of any topology. Given input boundary conditions and geometry configurations, the well-trained model can predict the dynamical concentration change during the transport process with an average error less than 10% and 120~330 times faster compared to IGA simulations. The effectiveness of the proposed model is demonstrated within several complex neurite networks.
We introduce Bi-GNN for modeling biological link prediction tasks such as drug-drug interaction (DDI) and protein-protein interaction (PPI). Taking drug-drug interaction as an example, existing methods using machine learning either only utilize the l ink structure between drugs without using the graph representation of each drug molecule, or only leverage the individual drug compound structures without using graph structure for the higher-level DDI graph. The key idea of our method is to fundamentally view the data as a bi-level graph, where the highest level graph represents the interaction between biological entities (interaction graph), and each biological entity itself is further expanded to its intrinsic graph representation (representation graphs), where the graph is either flat like a drug compound or hierarchical like a protein with amino acid level graph, secondary structure, tertiary structure, etc. Our model not only allows the usage of information from both the high-level interaction graph and the low-level representation graphs, but also offers a baseline for future research opportunities to address the bi-level nature of the data.
We present hidden fluid mechanics (HFM), a physics informed deep learning framework capable of encoding an important class of physical laws governing fluid motions, namely the Navier-Stokes equations. In particular, we seek to leverage the underlying conservation laws (i.e., for mass, momentum, and energy) to infer hidden quantities of interest such as velocity and pressure fields merely from spatio-temporal visualizations of a passive scaler (e.g., dye or smoke), transported in arbitrarily complex domains (e.g., in human arteries or brain aneurysms). Our approach towards solving the aforementioned data assimilation problem is unique as we design an algorithm that is agnostic to the geometry or the initial and boundary conditions. This makes HFM highly flexible in choosing the spatio-temporal domain of interest for data acquisition as well as subsequent training and predictions. Consequently, the predictions made by HFM are among those cases where a pure machine learning strategy or a mere scientific computing approach simply cannot reproduce. The proposed algorithm achieves accurate predictions of the pressure and velocity fields in both two and three dimensional flows for several benchmark problems motivated by real-world applications. Our results demonstrate that this relatively simple methodology can be used in physical and biomedical problems to extract valuable quantitative information (e.g., lift and drag forces or wall shear stresses in arteries) for which direct measurements may not be possible.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا