ﻻ يوجد ملخص باللغة العربية
In this paper, we study the uplink channel throughput performance of a proposed novel multiple-antenna hybrid-domain non-orthogonal multiple access (MA-HD-NOMA) scheme. This scheme combines the conventional sparse code multiple access (SCMA) and power-domain NOMA (PD-NOMA) schemes in order to increase the number of users served as compared to conventional NOMA schemes and uses multiple antennas at the base station. To this end, a joint resource allocation problem for the MA-HD-NOMA scheme is formulated that maximizes the sum rate of the entire system. For a comprehensive comparison, the joint resource allocation problems for the multi-antenna SCMA (MA-SCMA) and multi-antenna PD-NOMA (MA-PD-NOMA) schemes with the same overloading factor are formulated as well. Each of the formulated problems is a mixed-integer non-convex program, and hence, we apply successive convex approximation (SCA)- and reweighted $ell_1$ minimization-based approaches to obtain rapidly converging solutions. Numerical results reveal that the proposed MA-HD-NOMA scheme has superior performance compared to MA-SCMA and MA-PD-NOMA.
Non-orthogonal multiple access (NOMA) and spectrum sharing are two potential technologies for providing massive connectivity in beyond fifth-generation (B5G) networks. In this paper, we present the performance analysis of a multi-antenna-assisted two
In this paper, we investigate a non-orthogonal multiple access (NOMA) based mobile edge computing (MEC) network, in which two users may partially offload their respective tasks to a single MEC server through uplink NOMA. We propose a new offloading s
Ambient backscatter communication (BackCom) is faced with the challenge that a single BackCom device can occupy multiple orthogonal resource blocks unintentionally. As a result, in order to avoid co-channel interference, a conventional approach is to
The scenario of an uplink two-user non-orthogonal multiple access (NOMA) communication system is analytically studied when it operates in the short packet transmission regime. The considered users support mobility and each is equipped with a single a
The fundamental power allocation requirements for NOMA systems with minimum quality of service (QoS) requirements are investigated. For any minimum QoS rate $R_0$, the limits on the power allocation coefficients for each user are derived, such that a