ﻻ يوجد ملخص باللغة العربية
Ambient backscatter communication (BackCom) is faced with the challenge that a single BackCom device can occupy multiple orthogonal resource blocks unintentionally. As a result, in order to avoid co-channel interference, a conventional approach is to serve multiple BackCom devices in different time slots, which reduces both spectral efficiency and connectivity. This letter demonstrates that the use of non-orthogonal multiple access (NOMA) can efficiently improve the system throughput and support massive connectivity in ambient BackCom networks. In particular, two transceiver design approaches are developed in the letter to realize different tradeoffs between system performance and complexity.
For downlink multi-user non-orthogonal multiple access (NOMA) systems with successive interference cancellation (SIC) receivers, and a base-station not possessing the instantaneous channel gains, the fundamental relationship between the target rates
The fundamental power allocation requirements for NOMA systems with minimum quality of service (QoS) requirements are investigated. For any minimum QoS rate $R_0$, the limits on the power allocation coefficients for each user are derived, such that a
A novel reconfigurable intelligent surface (RIS) aided non-orthogonal multiple access (NOMA) downlink transmission framework is proposed. We formulate a long-term stochastic optimization problem that involves a joint optimization of NOMA user partiti
A non-orthogonal multiple access (NOMA) approach that always outperforms orthogonal multiple access (OMA) called Fair-NOMA is introduced. In Fair-NOMA, each mobile user is allocated its share of the transmit power such that its capacity is always gre
The problem of transmitting a common message to multiple users over the Gaussian multiple-input multiple-output broadcast channel is considered, where each user is equipped with an arbitrary number of antennas. A closed-loop scenario is assumed, for