ترغب بنشر مسار تعليمي؟ اضغط هنا

How robustly can we constrain the low-mass end of the $zsim6-7$ stellar mass function? -- The limits of lensing models and stellar population assumptions in the Hubble Frontier Fields

242   0   0.0 ( 0 )
 نشر من قبل Lukas J. Furtak
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Lukas J. Furtak




اسأل ChatGPT حول البحث

We present new measurements of the very low-mass end of the galaxy stellar mass function (GSMF) at $zsim6-7$ computed from a rest-frame ultraviolet selected sample of dropout galaxies. These galaxies lie behind the six Hubble Frontier Fields clusters and are all gravitationally magnified. Using deep Spitzer/IRAC and Hubble Space Telescope imaging, we derive stellar masses by fitting galaxy spectral energy distributions and explore the impact of different model assumptions and parameter degeneracies on the resulting GSMF. Our sample probes stellar masses down to $M_{star}>10^{6},text{M}_{odot}$ and we find the $zsim6-7$ GSMF to be best parametrized by a modified Schechter function which allows for a turnover at very low masses. Using a Monte-Carlo Markov Chain analysis of the GSMF, including accurate treatment of lensing uncertainties, we obtain a relatively steep low-mass end slope $alphasimeq-1.96_{-0.08}^{+0.09}$ and a turnover at $log(M_T/text{M}_{odot})simeq7.10_{-0.56}^{+0.17}$ with a curvature of $betasimeq1.00_{-0.73}^{+0.87}$ for our minimum assumption model with constant star-formation history (SFH) and low dust attenuation, $A_Vleq0.2$. We find that the $zsim6-7$ GSMF, in particular its very low-mass end, is significantly affected by the assumed functional form of the star formation history and the degeneracy between stellar mass and dust attenuation. For example, the low-mass end slope ranges from $alphasimeq-1.82_{-0.07}^{+0.08}$ for an exponentially rising SFH to $alphasimeq-2.34_{-0.10}^{+0.11}$ when allowing $A_V$ of up to 3.25. Future observations at longer wavelengths and higher angular resolution with the James Webb Space Telescope are required to break these degeneracies and to robustly constrain the stellar mass of galaxies on the extreme low-mass end of the GSMF.



قيم البحث

اقرأ أيضاً

We quantify the systematic effects on the stellar mass function which arise from assumptions about the stellar population, as well as how one fits the light profiles of the most luminous galaxies at z ~ 0.1. When comparing results from the literature , we are careful to separate out these effects. Our analysis shows that while systematics in the estimated comoving number density which arise from different treatments of the stellar population remain of order < 0.5 dex, systematics in photometry are now about 0.1 dex, despite recent claims in the literature. Compared to these more recent analyses, previous work based on Sloan Digital Sky Survey (SDSS) pipeline photometry leads to underestimates of rho_*(> M_*) by factors of 3-10 in the mass range 10^11 - 10^11.6 M_Sun, but up to a factor of 100 at higher stellar masses. This impacts studies which match massive galaxies to dark matter halos. Although systematics which arise from different treatments of the stellar population remain of order < 0.5 dex, our finding that systematics in photometry now amount to only about 0.1 dex in the stellar mass density is a significant improvement with respect to a decade ago. Our results highlight the importance of using the same stellar population and photometric models whenever low and high redshift samples are compared.
We derive a free-form mass distribution for the unrelaxed cluster A370 (z=0.375), using the latest Hubble Frontier Fields images and GLASS spectroscopy. Starting from a reliable set of 10 multiply lensed systems we produce a free-form lens model that identifies ~ 80 multiple-images. Good consistency is found between models using independent subsamples of these lensed systems, with detailed agreement for the well resolved arcs. The mass distribution has two very similar concentrations centred on the two prominent Brightest Cluster Galaxies (or BCGs), with mass profiles that are accurately constrained by a uniquely useful system of long radially lensed images centred on both BCGs. We show that the lensing mass profiles of these BCGs are mainly accounted for by their stellar mass profiles, with a modest contribution from dark matter within r<100 kpc of each BCG. This conclusion may favour a cooled cluster gas origin for BCGs, rather than via mergers of normal galaxies for which dark matter should dominate over stars. Growth via merging between BCGs is, however, consistent with this finding, so that stars still dominate over dark matter .
[abridged] We present a strong-lensing analysis of MACSJ0717.5+3745, based on the full depth of the Hubble Frontier Field (HFF) observations, which brings the number of multiply imaged systems to 61, ten of which are spectroscopically confirmed. The total number of images comprised in these systems rises to 165. Our analysis uses a parametric mass reconstruction technique, as implemented in the Lenstool software, to constrain a mass distribution composed of four large-scale mass components + galaxy-scale perturbers. We find a superposition of cored isothermal mass components to provide a good fit to the observational constraints, resulting in a very shallow mass distribution for the smooth (large-scale) component. Given the implications of such a flat mass profile, we investigate whether a model composed of peaky non-cored mass components can also reproduce the observational constraints. We find that such a non-cored mass model reproduces the observational constraints equally well. Although the total mass distributions of both models are consistent, as well as the integrated two dimensional mass profiles, we find that the smooth and the galaxy-scale components are very different. We conclude that, even in the HFF era, the generic degeneracy between smooth and galaxy-scale components is not broken, in particular in such a complex galaxy cluster. Consequently, insights into the mass distribution of MACS J0717 remain limited, underlining the need for additional probes beyond strong lensing. Our findings also have implications for estimates of the lensing magnification: we show that the amplification difference between the two models is larger than the error associated with either model. This uncertainty decreases the area of the image plane where we can reliably study the high-redshift Universe by 50 to 70%.
The stellar initial mass function (IMF) seems to be variable and not universal, as argued in the literature in the last three decades. Several relations among the low-mass end of the IMF slope and other stellar population, photometric or kinematic pa rameters of massive early-type galaxies (ETGs) have been proposed, but a consolidated agreement on a factual cause of the observed variations has not been reached yet. We investigate the relations between the IMF and other stellar population parameters in NGC 3311, the central galaxy of the Hydra I cluster. NGC 3311 is characterized by old and metal-rich stars, like other massive ETGs, but has unusual increasing stellar velocity dispersion and [$alpha/$Fe] profiles. We use spatially resolved MUSE observations to obtain stellar population properties using Bayesian full-spectrum fitting in the central part of NGC 3311 to compare the IMF slope against other stellar parameters with the goal of assessing their relations/dependencies. For NGC 3311, we unambiguously invalidate the previously observed direct correlation between the IMF slope and the local stellar velocity dispersion, confirming some doubts already raised in the literature. This relation may arise as a spatial coincidence only, between the region with the largest stellar velocity dispersion, with that where the oldest, $textit{in situ}$ population is found and dominates. We also show robust evidence that the proposed IMF-metallicity relation is contaminated by the degeneracy between these two parameters. The tightest correlations we found are those between stellar age and IMF and between galactocentric radius and IMF. The variation of the IMF is not due to kinematical, dynamical, or global properties in NGC 3311. We speculate that IMF might be dwarf-dominated in the red-nuggets formed at high redshifts that ended up being the central cores of todays giant ellipticals. [Abridged]
205 - Ignacio Ferreras 2010
The low-mass end of the stellar Initial Mass Function (IMF) is constrained by focusing on the baryon-dominated central regions of strong lensing galaxies. We study in this letter the Einstein Cross (Q2237+0305), a z=0.04 barred galaxy whose bulge act s as lens on a background quasar. The positions of the four quasar images constrain the surface mass density on the lens plane, whereas the surface brightness (H-band NICMOS/HST imaging) along with deep spectroscopy of the lens (VLT/FORS1) allow us to constrain the stellar mass content, for a range of IMFs. We find that a classical single power law (Salpeter IMF) predicts more stellar mass than the observed lensing estimates. This result is confirmed at the 99% confidence level, and is robust to systematic effects due to the choice of population synthesis models, the presence of dust, or the complex disk/bulge population mix. Our non-parametric methodology is more robust than kinematic estimates, as we do not need to make any assumptions about the dynamical state of the galaxy or its decomposition into bulge and disk. Over a range of low-mass power law slopes (with Salpeter being Gamma=+1.35) we find that at a 90% confidence level, slopes with Gamma>0 are ruled out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا