ﻻ يوجد ملخص باللغة العربية
We present new measurements of the very low-mass end of the galaxy stellar mass function (GSMF) at $zsim6-7$ computed from a rest-frame ultraviolet selected sample of dropout galaxies. These galaxies lie behind the six Hubble Frontier Fields clusters and are all gravitationally magnified. Using deep Spitzer/IRAC and Hubble Space Telescope imaging, we derive stellar masses by fitting galaxy spectral energy distributions and explore the impact of different model assumptions and parameter degeneracies on the resulting GSMF. Our sample probes stellar masses down to $M_{star}>10^{6},text{M}_{odot}$ and we find the $zsim6-7$ GSMF to be best parametrized by a modified Schechter function which allows for a turnover at very low masses. Using a Monte-Carlo Markov Chain analysis of the GSMF, including accurate treatment of lensing uncertainties, we obtain a relatively steep low-mass end slope $alphasimeq-1.96_{-0.08}^{+0.09}$ and a turnover at $log(M_T/text{M}_{odot})simeq7.10_{-0.56}^{+0.17}$ with a curvature of $betasimeq1.00_{-0.73}^{+0.87}$ for our minimum assumption model with constant star-formation history (SFH) and low dust attenuation, $A_Vleq0.2$. We find that the $zsim6-7$ GSMF, in particular its very low-mass end, is significantly affected by the assumed functional form of the star formation history and the degeneracy between stellar mass and dust attenuation. For example, the low-mass end slope ranges from $alphasimeq-1.82_{-0.07}^{+0.08}$ for an exponentially rising SFH to $alphasimeq-2.34_{-0.10}^{+0.11}$ when allowing $A_V$ of up to 3.25. Future observations at longer wavelengths and higher angular resolution with the James Webb Space Telescope are required to break these degeneracies and to robustly constrain the stellar mass of galaxies on the extreme low-mass end of the GSMF.
We quantify the systematic effects on the stellar mass function which arise from assumptions about the stellar population, as well as how one fits the light profiles of the most luminous galaxies at z ~ 0.1. When comparing results from the literature
We derive a free-form mass distribution for the unrelaxed cluster A370 (z=0.375), using the latest Hubble Frontier Fields images and GLASS spectroscopy. Starting from a reliable set of 10 multiply lensed systems we produce a free-form lens model that
[abridged] We present a strong-lensing analysis of MACSJ0717.5+3745, based on the full depth of the Hubble Frontier Field (HFF) observations, which brings the number of multiply imaged systems to 61, ten of which are spectroscopically confirmed. The
The stellar initial mass function (IMF) seems to be variable and not universal, as argued in the literature in the last three decades. Several relations among the low-mass end of the IMF slope and other stellar population, photometric or kinematic pa
The low-mass end of the stellar Initial Mass Function (IMF) is constrained by focusing on the baryon-dominated central regions of strong lensing galaxies. We study in this letter the Einstein Cross (Q2237+0305), a z=0.04 barred galaxy whose bulge act