ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic fields of active galactic nuclei and quasars with polarized broad H-alpha lines

85   0   0.0 ( 0 )
 نشر من قبل Yuri Gnedin
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present estimates of magnetic field in a number of AGNs from the Spectropolarimetric atlas of Smith, Young & Robinson (2002) from the observed degrees of linear polarization and the positional angles of spectral lines (H-alpha) (broad line regions of AGNs) and nearby continuum. The observed polarization is lower than the Milne value in a non-magnetized atmosphere. We hypothesize that the polarized radiation escapes from optically thick magnetized accretion discs and is weakened by the Faraday rotation effect. This effect is able to explain both the value of the polarization and the position angle. We estimate the required magnetic field in the broad line region by using simple asymptotic analytical formulas for Milnes problem in magnetized atmosphere, which take into account the last scattering of radiation before escaping from the accretion disc. The polarization of a broad spectral line escaping from disc is described by the same mechanism. The characteristic features of polarization of a broad line is the minimum of the degree of polarization in the center of the line and continuous rotation of the position angle from one wing to another. These effects can be explained by existence of clouds in the left (velocity is directed to an observer) and the right (velocity is directed from an observer) parts of the orbit in a rotating keplerian magnetized accretion disc. The base of explanation is existence of azimuthal magnetic field in the orbit. The existence of normal component of magnetic field makes the picture of polarization asymmetric. The existence of clouds in left and right parts of the orbit with different emissions also give the contribution in asymmetry effect. Assuming a power-law dependence of the magnetic field inside the disc, we obtain the estimate of the magnetic field strength at first stable orbit near the central SMBH for a number of AGNs.

قيم البحث

اقرأ أيضاً

The STOKES Monte Carlo radiative transfer code has been extended to model the velocity dependence of the polarization of emission lines. We use STOKES to present improved modelling of the velocity-dependent polarization of broad emission lines in act ive galactic nuclei. We confirm that off-axis continuum emission can produce observed velocity dependencies of both the degree and position angle of polarization. The characteristic features are a dip in the percentage polarization and an S-shaped swing in the position angle of the polarization across the line profile. Some differences between our STOKES results and previous modelling of polarization due to off-axis emission are noted. In particular we find that the presence of an offset between the maximum in line flux and the dip in the percentage of polarization or the central velocity of the swing in position angle does not necessarily imply that the scattering material is moving radially. Our model is an alternative scenario to the equatorial scattering disk described by Smith et al. (2005). We discuss strategies to discriminate between both interpretations and to constrain their relative contributions to the observed velocity-resolved line and polarization.
Inspired by our serendipitous discovery of six AGNs with varying broad-Halpha fluxes over years out of our searching for intermediate-mass black holes (IMBHs), we conduct a systematic investigation of changing-look (CL) and large-variability AGNs. We collect all the CL AGNs at z<0.15 and the reverberation mapped AGNs with strongly variable broad Halpha, and perform careful decomposition fittings to both their images and spectra. We find two observational facts: (1) The host galaxies of local CL and large-variability AGNs, mainly being Seyferts, are in the red (gas-poor) tail of the general Seyfert galaxy population. (2) In contrast, there is a significant trend that their more luminous counterparts namely CL and extremely variable quasars (CLQs and EVQs) are different: CLQs are generally in blue galaxies; in terms of the diagram of SFR and M* local CL Seyfert galaxies are located in the green valley, whereas CLQ hosts are in the star-forming main sequence. We propose explanations for those strongly variable Seyferts and quasars, respectively, under the thought that accretion disks broadly depend on nuclear fueling modes. Local large-variability and CL Seyferts are in nuclear famine mode, where cold-gas clumps can be formed stochastically in the fueling flow, and their episodic infall produces sharp peaks in the accretion-rate curve. CLQs and EVQs are in feast fueling mode, which may account for both their preference to blue galaxies and their variability pattern (high-amplitude tail of the continuous distribution). Lastly, we propose a new thinking: to search for IMBHs by optical variability in red galaxies.
91 - A. Reimer , M. Boettcher 2012
In this paper, we review the prospects for studies of active galactic nuclei (AGN) using the envisioned future Cherenkov Telescope Array (CTA). This review focuses on jetted AGN, which constitute the vast majority of AGN detected at gamma-ray energie s. Future progress will be driven by the planned lower energy threshold for very high energy (VHE) gamma-ray detections to ~10 GeV and improved flux sensitivity compared to current-generation Cherenkov Telescope facilities. We argue that CTA will enable substantial progress on gamma-ray population studies by deepening existing surveys both through increased flux sensitivity and by improving the chances of detecting a larger number of low-frequency peaked blazars because of the lower energy threshold. More detailed studies of the VHE gamma-ray spectral shape and variability might furthermore yield insight into unsolved questions concerning jet formation and composition, the acceleration of particles within relativistic jets, and the microphysics of the radiation mechanisms leading to the observable high-energy emission. The broad energy range covered by CTA includes energies where gamma-rays are unaffected from absorption while propagating in the extragalactic background light (EBL), and extends to an energy regime where VHE spectra are strongly distorted. This will help to reduce systematic effects in the spectra from different instruments, leading to a more reliable EBL determination, and hence will make it possible to constrain blazar models up to the highest energies with less ambiguity.
Apart from viewing-dependent obscuration, intrinsic broad-line emission from active galactic nuclei (AGNs) follows an evolutionary sequence: Type $1 to 1.2/1.5 to 1.8/1.9 to 2$ as the accretion rate onto the central black hole is decreasing. This spe ctral evolution is controlled, at least in part, by the parameter $L_{rm bol}/M^{2/3}$, where $L_{rm bol}$ is the AGN bolometric luminosity and $M$ is the black hole mass. Both this dependence and the double-peaked profiles that emerge along the sequence arise naturally in the disk-wind scenario for the AGN broad-line region.
77 - Shinichiro Ando 2010
Intergalactic magnetic fields (IGMF) can cause the appearance of halos around the gamma-ray images of distant objects because an electromagnetic cascade initiated by a high-energy gamma-ray interaction with the photon background is broadened by magne tic deflections. We report evidence of such gamma-ray halos in the stacked images of the 170 brightest active galactic nuclei (AGN) in the 11-month source catalog of the Fermi Gamma-Ray Space Telescope. Excess over point spread function in the surface brightness profile is statistically significant at 3.5sigma (99.95% confidence level), for the nearby, hard population of AGN. The halo size and brightness are consistent with IGMF, B_{IGMF} ~ 10^{-15} G. The knowledge of IGMF will facilitate the future gamma-ray and charged-particle astronomy. Furthermore, since IGMF are likely to originate from the primordial seed fields created shortly after the Big Bang, this potentially opens a new window on the origin of cosmological magnetic fields, inflation, and the phase transitions in the early Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا