ترغب بنشر مسار تعليمي؟ اضغط هنا

Fundamental physics with Espresso: Towards an accurate wavelength calibration for a precision test of the fine-structure constant

71   0   0.0 ( 0 )
 نشر من قبل Tobias M. Schmidt
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of metal absorption systems in the spectra of distant quasars allow to constrain a possible variation of the fine-structure constant throughout the history of the Universe. Such a test poses utmost demands on the wavelength accuracy and previous studies were limited by systematics in the spectrograph wavelength calibration. A substantial advance in the field is therefore expected from the new ultra-stable high-resolution spectrograph Espresso, recently installed at the VLT. In preparation of the fundamental physics related part of the Espresso GTO program, we present a thorough assessment of the Espresso wavelength accuracy and identify possible systematics at each of the different steps involved in the wavelength calibration process. Most importantly, we compare the default wavelength solution, based on the combination of Thorium-Argon arc lamp spectra and a Fabry-Perot interferometer, to the fully independent calibration obtained from a laser frequency comb. We find wavelength-dependent discrepancies of up to 24m/s. This substantially exceeds the photon noise and highlights the presence of different sources of systematics, which we characterize in detail as part of this study. Nevertheless, our study demonstrates the outstanding accuracy of Espresso with respect to previously used spectrographs and we show that constraints of a relative change of the fine-structure constant at the $10^{-6}$ level can be obtained with Espresso without being limited by wavelength calibration systematics.

قيم البحث

اقرأ أيضاً

The Keck telescopes HIRES spectrograph has previously provided evidence for a smaller fine-structure constant, alpha, compared to the current laboratory value, in a sample of 143 quasar absorption systems: da/a=(-0.57+/-0.11)x10^{-5}. This was based on a variety of metal-ion transitions which, if alpha varies, experience different relative velocity shifts. This result is yet to be robustly contradicted, or confirmed, by measurements on other telescopes and spectrographs; it remains crucial to do so. It is also important to consider new possible instrumental systematic effects which may explain the Keck/HIRES results. Griest et al. (2009, arXiv:0904.4725v1) recently identified distortions in the echelle order wavelength scales of HIRES with typical amplitudes +/-250m/s. Here we investigate the effect such distortions may have had on the Keck/HIRES varying alpha results. We demonstrate that they cause a random effect on da/a from absorber to absorber because the systems are at different redshifts, placing the relevant absorption lines at different positions in different echelle orders. The typical magnitude of the effect on da/a is ~0.4x10^{-5} per absorber which, compared to the median error on da/a in the sample, ~1.9x10^{-5}, is relatively small. Consequently, the weighted mean value changes by less than 0.05x10^{-5} if the corrections we calculate are applied. Nevertheless, we urge caution, particularly for analyses aiming to achieve high precision da/a measurements on individual systems or small samples, that a much more detailed understanding of such intra-order distortions and their dependence on observational parameters is important if they are to be avoided or modelled reliably. [Abridged]
55 - R. Smits , S.J. Tingay , N. Wex 2011
Parallax measurements of pulsars allow for accurate measurements of the interstellar electron density and contribute to accurate tests of general relativity using binary systems. The Square Kilometre Array (SKA) will be an ideal instrument for measur ing the parallax of pulsars, because it has a very high sensitivity, as well as baselines extending up to several thousands of kilometres. We performed simulations to estimate the number of pulsars for which the parallax can be measured with the SKA and the distance to which a parallax can be measured. We compare two different methods. The first method measures the parallax directly by utilising the long baselines of the SKA to form high angular resolution images. The second method uses the arrival times of the radio signals of pulsars to fit a transformation between time coordinates in the terrestrial frame and the comoving pulsar frame directly yielding the parallax. We find that with the first method a parallax with an accuracy of 20% or less can be measured up to a maximum distance of 13 kpc, which would include 9,000 pulsars. By timing pulsars with the most stable arrival times for the radio emission, parallaxes can be measured for about 3,600 millisecond pulsars up to a distance of 9 kpc with an accuracy of 20%.
252 - J. B. Whitmore 2014
We present a new `supercalibration technique for measuring systematic distortions in the wavelength scales of high resolution spectrographs. By comparing spectra of `solar twin stars or asteroids with a reference laboratory solar spectrum, distortion s in the standard thorium--argon calibration can be tracked with $sim$10 m s$^{-1}$ precision over the entire optical wavelength range on scales of both echelle orders ($sim$50--100 AA) and entire spectrographs arms ($sim$1000--3000 AA). Using archival spectra from the past 20 years we have probed the supercalibration history of the VLT--UVES and Keck--HIRES spectrographs. We find that systematic errors in their wavelength scales are ubiquitous and substantial, with long-range distortions varying between typically $pm$200 m s$^{-1}$ per 1000 AA. We apply a simple model of these distortions to simulated spectra that characterize the large UVES and HIRES quasar samples which previously indicated possible evidence for cosmological variations in the fine-structure constant, $alpha$. The spurious deviations in $alpha$ produced by the model closely match important aspects of the VLT--UVES quasar results at all redshifts and partially explain the HIRES results, though not self-consistently at all redshifts. That is, the apparent ubiquity, size and general characteristics of the distortions are capable of significantly weakening the evidence for variations in $alpha$ from quasar absorption lines.
Large statistical samples of quasar spectra have previously indicated possible cosmological variations in the fine-structure constant, $alpha$. A smaller sample of higher signal-to-noise ratio spectra, with dedicated calibration, would allow a detail ed test of this evidence. Towards that end, we observed equatorial quasar HS 1549$+$1919 with three telescopes: the Very Large Telescope, Keck and, for the first time in such analyses, Subaru. By directly comparing these spectra to each other, and by `supercalibrating them using asteroid and iodine-cell tests, we detected and removed long-range distortions of the quasar spectras wavelength scales which would have caused significant systematic errors in our $alpha$ measurements. For each telescope we measure the relative deviation in $alpha$ from the current laboratory value, $Deltaalpha/alpha$, in 3 absorption systems at redshifts $z_{mathrm{abs}}=1.143$, 1.342, and 1.802. The nine measurements of $Deltaalpha/alpha$ are all consistent with zero at the 2-$sigma$ level, with 1-$sigma$ statistical (systematic) uncertainties 5.6--24 (1.8--7.0) parts per million (ppm). They are also consistent with each other at the 1-$sigma$ level, allowing us to form a combined value for each telescope and, finally, a single value for this line of sight: $Deltaalpha/alpha=-5.4 pm 3.3_{mathrm{stat}} pm 1.5_{mathrm{sys}}$ ppm, consistent with both zero and previous, large samples. We also average all Large Programme results measuring $Deltaalpha/alpha=-0.6 pm 1.9_{mathrm{stat}} pm 0.9_{mathrm{sys}}$ ppm. Our results demonstrate the robustness and reliability at the 3 ppm level afforded by supercalibration techniques and direct comparison of spectra from different telescopes.
The Mid-Infrared Instrument (MIRI) on-board JWST will provide imaging, coronagraphy, low-resolution spectroscopy and medium-resolution spectroscopy at unprecedented sensitivity levels in the mid-infrared wavelength range. The Medium-Resolution Spectr ometer (MRS) of MIRI is an integral field spectrograph that provides diffraction-limited spectroscopy between 4.9 and 28.3 um, within a FOV varying from 13 to 56 square. From ground testing, we calculate the physical parameters essential to general observers and calibrating the wavelength solution and resolving power of the MRS is critical for maximising the scientific performance of the instrument. We have used ground-based observations of discrete spectral features in combination with Fabry-Perot etalon spectra to characterize the wavelength solution and spectral resolving power of the MRS. We present the methodology used to derive the MRS spectral characterisation, which includes the precise wavelength coverage of each MRS sub-band, computation of the resolving power as a function of wavelength, and measuring slice-dependent spectral distortions. The resolving power varies from R3500 in channel 1 to R1500 in channel 4. Based on the ground test data, the wavelength calibration accuracy is estimated to be below one tenth of a pixel, with small systematic shifts due to the target position within a slice for unresolved sources, that have a maximum amplitude of about 0.25 spectral resolution elements. Based on ground test data, the MRS complies with the spectral requirements for both the R and wavelength accuracy for which it was designed. We also present the commissioning strategies and targets that will be followed to update the spectral characterisation of the MRS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا