ترغب بنشر مسار تعليمي؟ اضغط هنا

The UVES Large Program for testing fundamental physics - III. Constraints on the fine-structure constant from 3 telescopes

125   0   0.0 ( 0 )
 نشر من قبل Tyler Evans
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Large statistical samples of quasar spectra have previously indicated possible cosmological variations in the fine-structure constant, $alpha$. A smaller sample of higher signal-to-noise ratio spectra, with dedicated calibration, would allow a detailed test of this evidence. Towards that end, we observed equatorial quasar HS 1549$+$1919 with three telescopes: the Very Large Telescope, Keck and, for the first time in such analyses, Subaru. By directly comparing these spectra to each other, and by `supercalibrating them using asteroid and iodine-cell tests, we detected and removed long-range distortions of the quasar spectras wavelength scales which would have caused significant systematic errors in our $alpha$ measurements. For each telescope we measure the relative deviation in $alpha$ from the current laboratory value, $Deltaalpha/alpha$, in 3 absorption systems at redshifts $z_{mathrm{abs}}=1.143$, 1.342, and 1.802. The nine measurements of $Deltaalpha/alpha$ are all consistent with zero at the 2-$sigma$ level, with 1-$sigma$ statistical (systematic) uncertainties 5.6--24 (1.8--7.0) parts per million (ppm). They are also consistent with each other at the 1-$sigma$ level, allowing us to form a combined value for each telescope and, finally, a single value for this line of sight: $Deltaalpha/alpha=-5.4 pm 3.3_{mathrm{stat}} pm 1.5_{mathrm{sys}}$ ppm, consistent with both zero and previous, large samples. We also average all Large Programme results measuring $Deltaalpha/alpha=-0.6 pm 1.9_{mathrm{stat}} pm 0.9_{mathrm{sys}}$ ppm. Our results demonstrate the robustness and reliability at the 3 ppm level afforded by supercalibration techniques and direct comparison of spectra from different telescopes.

قيم البحث

اقرأ أيضاً

We present an accurate analysis of the H2 absorption lines from the zabs ~ 2.4018 damped Ly{alpha} system towards HE 0027-1836 observed with the Very Large Telescope Ultraviolet and Visual Echelle Spectrograph (VLT/UVES) as a part of the European Sou thern Observatory Large Programme The UVES large programme for testing fundamental physics to constrain the variation of proton-to-electron mass ratio, {mu} = mp/me. We perform cross-correlation analysis between 19 individual exposures taken over three years and the combined spectrum to check the wavelength calibration stability. We notice the presence of a possible wavelength dependent velocity drift especially in the data taken in 2012. We use available asteroids spectra taken with UVES close to our observations to confirm and quantify this effect. We consider single and two component Voigt profiles to model the observed H2 absorption profiles. We use both linear regression analysis and Voigt profile fitting where {Delta}{mu}/{mu} is explicitly considered as an additional fitting parameter. The two component model is marginally favored by the statistical indicators and we get {Delta}{mu}/{mu} = (-2.5 +/- 8.1(stat) +/- 6.2(sys)) ppm. When we apply the correction to the wavelength dependent velocity drift we find {Delta}{mu}/{mu} = (-7.6 +/- 8.1(stat) +/- 6.3(sys)) ppm. It will be important to check the extent to which the velocity drift we notice in this study is present in UVES data used for previous {Delta}{mu}/{mu} measurements.
Absorption line systems detected in quasar spectra can be used to compare the value of the fine-structure constant, {alpha}, measured today on Earth with its value in distant galaxies. In recent years, some evidence has emerged of small temporal and also spatial variations of {alpha} on cosmological scales which may reach a fractional level of ~ 10 ppm (parts per million). To test these claims we are conducting a Large Program with the VLT UVES . We are obtaining high-resolution (R ~ 60000 and high signal-to-noise ratio (S/N ~ 100) UVES spectra calibrated specifically for this purpose. Here we analyse the first complete quasar spectrum from this Program, that of HE 2217-2818. We apply the Many Multiplet method to measure {alpha} in 5 absorption systems towards this quasar: zabs = 0.7866, 0.9424, 1.5558, 1.6279 and 1.6919. The most precise result is obtained for the absorber at zabs = 1.6919 where 3 Fe II transitions and Al II {lambda}1670 have high S/N and provide a wide range of sensitivities to {alpha}. The absorption profile is complex, with several very narrow features, and requires 32 velocity components to be fitted to the data. Our final result for the relative variation in {alpha} in this system is Delta{alpha}/{alpha} = +1.3 +/- 2.4stat +/- 1.0sys ppm. This is one of the tightest current bounds on {alpha} variation from an individual absorber. The absorbers towards quasar HE 2217-2818 reveal no evidence for variation in {alpha} at the 3 ppm precision level (1{sigma} confidence). If the recently reported 10 ppm dipolar variation of {alpha} across the sky were correct, the expectation at this sky position is (3.2-5.4) +/-1.7 ppm depending on dipole model used . Our constraint of Delta{alpha}/{alpha}=+1.3+/-2.4stat +/-1.0sys ppm is not inconsistent with this expectation.
The Keck telescopes HIRES spectrograph has previously provided evidence for a smaller fine-structure constant, alpha, compared to the current laboratory value, in a sample of 143 quasar absorption systems: da/a=(-0.57+/-0.11)x10^{-5}. This was based on a variety of metal-ion transitions which, if alpha varies, experience different relative velocity shifts. This result is yet to be robustly contradicted, or confirmed, by measurements on other telescopes and spectrographs; it remains crucial to do so. It is also important to consider new possible instrumental systematic effects which may explain the Keck/HIRES results. Griest et al. (2009, arXiv:0904.4725v1) recently identified distortions in the echelle order wavelength scales of HIRES with typical amplitudes +/-250m/s. Here we investigate the effect such distortions may have had on the Keck/HIRES varying alpha results. We demonstrate that they cause a random effect on da/a from absorber to absorber because the systems are at different redshifts, placing the relevant absorption lines at different positions in different echelle orders. The typical magnitude of the effect on da/a is ~0.4x10^{-5} per absorber which, compared to the median error on da/a in the sample, ~1.9x10^{-5}, is relatively small. Consequently, the weighted mean value changes by less than 0.05x10^{-5} if the corrections we calculate are applied. Nevertheless, we urge caution, particularly for analyses aiming to achieve high precision da/a measurements on individual systems or small samples, that a much more detailed understanding of such intra-order distortions and their dependence on observational parameters is important if they are to be avoided or modelled reliably. [Abridged]
Consistency between cosmological data sets is essential for ongoing and future cosmological analyses. We first investigate the questions of stability and applicability of some moment-based inconsistency measures to multiple data sets. We show that th e recently introduced index of inconsistency (IOI) is numerically stable while it can be applied to multiple data sets. We use an illustrative construction of constraints as well as an example with real data sets (i.e. WMAP versus Planck) to show some limitations of the application of the Karhunen-Loeve decomposition to discordance measures. Second, we perform various consistency analyzes using IOI between multiple current data sets while textit{working with the entire common parameter spaces}. We find current Large-Scale-Structure (LSS) data sets (Planck CMB lensing, DES lensing-clustering and SDSS RSD) all to be consistent with one another. This is found to be not the case for Planck temperature (TT) versus polarization (TE,EE) data, where moderate inconsistencies are present. Noteworthy, we find a strong inconsistency between joint LSS probes and Planck with IOI=5.27, and a moderate tension between DES and Planck with IOI=3.14. Next, using the IOI metric, we compare the Hubble constant from five independent probes. We confirm previous strong tensions between local measurement (SH0ES) and Planck as well as between H0LiCOW and Planck, but also find new strong tensions between SH0ES measurement and the joint LSS probes with IOI=6.73 (i.e. 3.7-$sigma$ in 1D) as well as between joint LSS and combined probes SH0ES+H0LiCOW with IOI=8.59 (i.e. 4.1-$sigma$ in 1D). Whether due to systematic effects in the data sets or problems with the underlying model, sources of these old and new tensions need to be identified and dealt with.
Observations of metal absorption systems in the spectra of distant quasars allow to constrain a possible variation of the fine-structure constant throughout the history of the Universe. Such a test poses utmost demands on the wavelength accuracy and previous studies were limited by systematics in the spectrograph wavelength calibration. A substantial advance in the field is therefore expected from the new ultra-stable high-resolution spectrograph Espresso, recently installed at the VLT. In preparation of the fundamental physics related part of the Espresso GTO program, we present a thorough assessment of the Espresso wavelength accuracy and identify possible systematics at each of the different steps involved in the wavelength calibration process. Most importantly, we compare the default wavelength solution, based on the combination of Thorium-Argon arc lamp spectra and a Fabry-Perot interferometer, to the fully independent calibration obtained from a laser frequency comb. We find wavelength-dependent discrepancies of up to 24m/s. This substantially exceeds the photon noise and highlights the presence of different sources of systematics, which we characterize in detail as part of this study. Nevertheless, our study demonstrates the outstanding accuracy of Espresso with respect to previously used spectrographs and we show that constraints of a relative change of the fine-structure constant at the $10^{-6}$ level can be obtained with Espresso without being limited by wavelength calibration systematics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا