ﻻ يوجد ملخص باللغة العربية
Entanglement entropy obeys area law scaling for typical physical quantum systems. This may naively be argued to follow from locality of interactions. We show that this is not the case by constructing an explicit simple spin chain Hamiltonian with nearest neighbor interactions that presents an entanglement volume scaling law. This non-translational model is contrived to have couplings that force the accumulation of singlet bonds across the half chain. Our result is complementary to the known relation between non-translational invariant, nearest neighbor interacting Hamiltonians and QMA complete problems.
Recent theoretical work has shown that the competition between coherent unitary dynamics and stochastic measurements, performed by the environment, along wavefunction trajectories can give rise to transitions in the entanglement scaling. In this work
The second law of thermodynamics is discussed and reformulated from a quantum information theoretic perspective for open quantum systems using relative entropy. Specifically, the relative entropy of a quantum state with respect to equilibrium states
The analysis of the entanglement entropy of a subsystem of a one-dimensional quantum system is a powerful tool for unravelling its critical nature. For instance, the scaling behaviour of the entanglement entropy determines the central charge of the a
The quantum entanglement measure is determined, for the first time, for antiferromagnetic trimer spin-1/2 Heisenberg chains. The physical quantity proposed to measure the entanglement is the distance between states by adopting the Hilbert-Schmidt nor
We use the quantum separation of variable (SOV) method to construct the eigenstates of the open XXZ chain with the most general boundary terms. The eigenstates in the inhomogeneous case are constructed in terms of solutions of a system of quadratic e