ﻻ يوجد ملخص باللغة العربية
While most purpose-built 21cm intensity mapping experiments are close-packed interferometer arrays, general-purpose dish arrays should also be capable of measuring the cosmological 21cm signal. This can be achieved most efficiently if the array is used as a collection of scanning autocorrelation dishes rather than as an interferometer. As a first step towards demonstrating the feasibility of this observing strategy, we show that we are able to successfully calibrate dual-polarisation autocorrelation data from 64 MeerKAT dishes in the L-band (856-1712 MHz, 4096 channels), with 10.5 hours of data retained from six nights of observing. We describe our calibration pipeline, which is based on multi-level RFI flagging, periodic noise diode injection to stabilise gain drifts and an absolute calibration based on a multi-component sky model. We show that it is sufficiently accurate to recover maps of diffuse celestial emission and point sources over a 10 deg x 30 deg patch of the sky overlapping with the WiggleZ 11hr field. The reconstructed maps have a good level of consistency between per-dish maps and external datasets, with the estimated thermal noise limited to 1.4 x the theoretical noise level (~ 2 mK). The residual maps have rms amplitudes below 0.1 K, corresponding to <1% of the model temperature. The reconstructed Galactic HI intensity map shows excellent agreement with the Effelsberg-Bonn HI Survey, and the flux of the radio galaxy 4C+03.18 is recovered to within 3.6%, which demonstrates that the autocorrelation can be successfully calibrated to give the zero-spacing flux and potentially help in the imaging of MeerKAT interferometric data. Our results provide a positive indication towards the feasibility of using MeerKAT and the future SKA to measure the HI intensity mapping signal and probe cosmology on degree scales and above.
We explore the possibility of performing an HI intensity mapping survey with the South African MeerKAT radio telescope, which is a precursor to the Square Kilometre Array (SKA). We propose to use cross-correlations between the MeerKAT intensity mappi
HI intensity mapping is an emerging tool to probe dark energy. Observations of the redshifted HI signal will be contaminated by instrumental noise, atmospheric and Galactic foregrounds. The latter is expected to be four orders of magnitude brighter t
We discuss the detection of large scale HI intensity fluctuations using a single dish approach with the ultimate objective of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. We present 3D power spectra, 2D
We discuss the detectability of large-scale HI intensity fluctuations using the FAST telescope. We present forecasts for the accuracy of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. The FAST $19$-beam L
HI intensity mapping (IM) is an exciting new probe that could revolutionize the future of cosmology. However, the relative faintness of the HI signal when compared to foregrounds of astrophysical or terrestrial origin will make HI IM extremely challe