ﻻ يوجد ملخص باللغة العربية
HI intensity mapping (IM) is an exciting new probe that could revolutionize the future of cosmology. However, the relative faintness of the HI signal when compared to foregrounds of astrophysical or terrestrial origin will make HI IM extremely challenging. The imprint of these foregrounds may result in systematic errors in the recovered cosmological signal. We discuss an IM simulation pipeline developed at Manchester that can introduce systematic errors at the TOD level in order to help assess their impact. We will present results for two potential sources of systematics for HI IM surveys: 1/f noise and the integrated emission from global navigation satellites.
HI intensity mapping is an emerging tool to probe dark energy. Observations of the redshifted HI signal will be contaminated by instrumental noise, atmospheric and Galactic foregrounds. The latter is expected to be four orders of magnitude brighter t
We discuss the detection of large scale HI intensity fluctuations using a single dish approach with the ultimate objective of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. We present 3D power spectra, 2D
While most purpose-built 21cm intensity mapping experiments are close-packed interferometer arrays, general-purpose dish arrays should also be capable of measuring the cosmological 21cm signal. This can be achieved most efficiently if the array is us
Line-intensity mapping, being an imperfect observation of the line-intensity field in a cosmological volume, will be subject to various anisotropies introduced in observation. Existing literature in the context of CO and [C II] line-intensity mapping
BINGO is a concept for performing a 21cm intensity mapping survey using a single dish telescope. We briefly discuss the idea of intensity mapping and go on to define our single dish concept. This involves a sim 40 m dish with an array of sim 50 feed