ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-Optimal Algorithms for Reachability, Strongly-Connected Components and Shortest Paths in Partially Dynamic Digraphs

71   0   0.0 ( 0 )
 نشر من قبل Maximilian Probst Gutenberg
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this thesis, we present new techniques to deal with fundamental algorithmic graph problems where graphs are directed and partially dynamic, i.e. undergo either a sequence of edge insertions or deletions: - Single-Source Reachability (SSR), - Strongly-Connected Components (SCCs), and - Single-Source Shortest Paths (SSSP). These problems have recently received an extraordinary amount of attention due to their role as subproblems in various more complex and notoriously hard graph problems, especially to compute flows, bipartite matchings and cuts. Our techniques lead to the first near-optimal data structures for these problems in various different settings. Letting $n$ denote the number of vertices in the graph and by $m$ the maximum number of edges in any version of the graph, we obtain - the first randomized data structure to maintain SSR and SCCs in near-optimal total update time $tilde{O}(m)$ in a graph undergoing edge deletions. - the first randomized data structure to maintain SSSP in partially dynamic graphs in total update time $tilde{O}(n^2)$ which is near-optimal in dense graphs. - the first deterministic data structures for SSR and SCC for graphs undergoing edge deletions, and for SSSP in partially dynamic graphs that improve upon the $O(mn)$ total update time by Even and Shiloach from 1981 that is often considered to be a fundamental barrier.



قيم البحث

اقرأ أيضاً

149 - Aaron Bernstein 2017
In this paper we consider the decremental single-source shortest paths (SSSP) problem, where given a graph $G$ and a source node $s$ the goal is to maintain shortest distances between $s$ and all other nodes in $G$ under a sequence of online adversar ial edge deletions. In their seminal work, Even and Shiloach [JACM 1981] presented an exact solution to the problem in unweighted graphs with only $O(mn)$ total update time over all edge deletions. Their classic algorithm was the state of the art for the decremental SSSP problem for three decades, even when approximate shortest paths are allowed. A series of results showed how to improve upon $O(mn)$ if approximation is allowed, culminating in a recent breakthrough of Henzinger, Krinninger and Nanongkai [FOCS 14], who presented a $(1+epsilon)$-approximate algorithm for undirected weighted graphs whose total update time is near linear: $O(m^{1+o(1)}log(W))$, where $W$ is the ratio of the heaviest to the lightest edge weight in the graph. In this paper they posed as a major open problem the question of derandomizing their result. Until very recently, all known improvements over the Even-Shiloach algorithm were randomized and required the assumption of a non-adaptive adversary. In STOC 2016, Bernstein and Chechik showed the first emph{deterministic} algorithm to go beyond $O(mn)$ total update time: the algorithm is also $(1+epsilon)$-approximate, and has total update time $tilde{O}(n^2)$. In SODA 2017, the same authors presented an algorithm with total update time $tilde{O}(mn^{3/4})$. However, both algorithms are restricted to undirected, unweighted graphs. We present the emph{first} deterministic algorithm for emph{weighted} undirected graphs to go beyond the $O(mn)$ bound. The total update time is $tilde{O}(n^2 log(W))$.
121 - Xiaojun Dong , Yan Gu , Yihan Sun 2021
In this paper, we study the single-source shortest-path (SSSP) problem with positive edge weights, which is a notoriously hard problem in the parallel context. In practice, the $Delta$-stepping algorithm proposed by Meyer and Sanders has been widely adopted. However, $Delta$-stepping has no known worst-case bounds for general graphs. The performance of $Delta$-stepping also highly relies on the parameter $Delta$. There have also been lots of algorithms with theoretical bounds, such as Radius-stepping, but they either have no implementations available or are much slower than $Delta$-stepping in practice. We propose a stepping algorithm framework that generalizes existing algorithms such as $Delta$-stepping and Radius-stepping. The framework allows for similar analysis and implementations of all stepping algorithms. We also propose a new ADT, lazy-batched priority queue (LaB-PQ), that abstracts the semantics of the priority queue needed by the stepping algorithms. We provide two data structures for LaB-PQ, focusing on theoretical and practical efficiency, respectively. Based on the new framework and LaB-PQ, we show two new stepping algorithms, $rho$-stepping and $Delta^*$-stepping, that are simple, with non-trivial worst-case bounds, and fast in practice. The stepping algorithm framework also provides almost identical implementations for three algorithms: Bellman-Ford, $Delta^*$-stepping, and $rho$-stepping. We compare our code with four state-of-the-art implementations. On five social and web graphs, $rho$-stepping is 1.3--2.5x faster than all the existing implementations. On two road graphs, our $Delta^*$-stepping is at least 14% faster than existing implementations, while $rho$-stepping is also competitive. The almost identical implementations for stepping algorithms also allow for in-depth analyses and comparisons among the stepping algorithms in practice.
We consider the parameterized complexity of the problem of tracking shortest s-t paths in graphs, motivated by applications in security and wireless networks. Given an undirected and unweighted graph with a source s and a destination t, Tracking Shor test Paths asks if there exists a k-sized subset of vertices (referred to as tracking set) that intersects each shortest s-t path in a distinct set of vertices. We first generalize this problem for set systems, namely Tracking Set System, where given a family of subsets of a universe, we are required to find a subset of elements from the universe that has a unique intersection with each set in the family. Tracking Set System is shown to be fixed-parameter tractable due to its relation with a known problem, Test Cover. By a reduction to the well-studied d-hitting set problem, we give a polynomial (with respect to k) kernel for the case when the set sizes are bounded by d. This also helps solving Tracking Shortest Paths when the input graph diameter is bounded by d. While the results for Tracking Set System help to show that Tracking Shortest Paths is fixed-parameter tractable, we also give an independent algorithm by using some preprocessing rules, resulting in an improved running time.
In the decremental $(1+epsilon)$-approximate Single-Source Shortest Path (SSSP) problem, we are given a graph $G=(V,E)$ with $n = |V|, m = |E|$, undergoing edge deletions, and a distinguished source $s in V$, and we are asked to process edge deletion s efficiently and answer queries for distance estimates $widetilde{mathbf{dist}}_G(s,v)$ for each $v in V$, at any stage, such that $mathbf{dist}_G(s,v) leq widetilde{mathbf{dist}}_G(s,v) leq (1+ epsilon)mathbf{dist}_G(s,v)$. In the decremental $(1+epsilon)$-approximate All-Pairs Shortest Path (APSP) problem, we are asked to answer queries for distance estimates $widetilde{mathbf{dist}}_G(u,v)$ for every $u,v in V$. In this article, we consider the problems for undirected, unweighted graphs. We present a new emph{deterministic} algorithm for the decremental $(1+epsilon)$-approximate SSSP problem that takes total update time $O(mn^{0.5 + o(1)})$. Our algorithm improves on the currently best algorithm for dense graphs by Chechik and Bernstein [STOC 2016] with total update time $tilde{O}(n^2)$ and the best existing algorithm for sparse graphs with running time $tilde{O}(n^{1.25}sqrt{m})$ [SODA 2017] whenever $m = O(n^{1.5 - o(1)})$. In order to obtain this new algorithm, we develop several new techniques including improved decremental cover data structures for graphs, a more efficient notion of the heavy/light decomposition framework introduced by Chechik and Bernstein and the first clustering technique to maintain a dynamic emph{sparse} emulator in the deterministic setting. As a by-product, we also obtain a new simple deterministic algorithm for the decremental $(1+epsilon)$-approximate APSP problem with near-optimal total running time $tilde{O}(mn /epsilon)$ matching the time complexity of the sophisticated but rather involved algorithm by Henzinger, Forster and Nanongkai [FOCS 2013].
Let $G = (V,E,w)$ be a weighted, digraph subject to a sequence of adversarial edge deletions. In the decremental single-source reachability problem (SSR), we are given a fixed source $s$ and the goal is to maintain a data structure that can answer pa th-queries $s rightarrowtail v$ for any $v in V$. In the more general single-source shortest paths (SSSP) problem the goal is to return an approximate shortest path to $v$, and in the SCC problem the goal is to maintain strongly connected components of $G$ and to answer path queries within each component. All of these problems have been very actively studied over the past two decades, but all the fast algorithms are randomized and, more significantly, they can only answer path queries if they assume a weaker model: they assume an oblivious adversary which is not adaptive and must fix the update sequence in advance. This assumption significantly limits the use of these data structures, most notably preventing them from being used as subroutines in static algorithms. All the above problems are notoriously difficult in the adaptive setting. In fact, the state-of-the-art is still the Even and Shiloach tree, which dates back all the way to 1981 and achieves total update time $O(mn)$. We present the first algorithms to break through this barrier: 1) deterministic decremental SSR/SCC with total update time $mn^{2/3 + o(1)}$ 2) deterministic decremental SSSP with total update time $n^{2+2/3+o(1)}$. To achieve these results, we develop two general techniques of broader interest for working with dynamic graphs: 1) a generalization of expander-based tools to dynamic directed graphs, and 2) a technique that we call congestion balancing and which provides a new method for maintaining flow under adversarial deletions. Using the second technique, we provide the first near-optimal algorithm for decremental bipartite matching.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا