ترغب بنشر مسار تعليمي؟ اضغط هنا

Deterministic Partially Dynamic Single Source Shortest Paths in Weighted Graphs

150   0   0.0 ( 0 )
 نشر من قبل Aaron Bernstein
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Aaron Bernstein




اسأل ChatGPT حول البحث

In this paper we consider the decremental single-source shortest paths (SSSP) problem, where given a graph $G$ and a source node $s$ the goal is to maintain shortest distances between $s$ and all other nodes in $G$ under a sequence of online adversarial edge deletions. In their seminal work, Even and Shiloach [JACM 1981] presented an exact solution to the problem in unweighted graphs with only $O(mn)$ total update time over all edge deletions. Their classic algorithm was the state of the art for the decremental SSSP problem for three decades, even when approximate shortest paths are allowed. A series of results showed how to improve upon $O(mn)$ if approximation is allowed, culminating in a recent breakthrough of Henzinger, Krinninger and Nanongkai [FOCS 14], who presented a $(1+epsilon)$-approximate algorithm for undirected weighted graphs whose total update time is near linear: $O(m^{1+o(1)}log(W))$, where $W$ is the ratio of the heaviest to the lightest edge weight in the graph. In this paper they posed as a major open problem the question of derandomizing their result. Until very recently, all known improvements over the Even-Shiloach algorithm were randomized and required the assumption of a non-adaptive adversary. In STOC 2016, Bernstein and Chechik showed the first emph{deterministic} algorithm to go beyond $O(mn)$ total update time: the algorithm is also $(1+epsilon)$-approximate, and has total update time $tilde{O}(n^2)$. In SODA 2017, the same authors presented an algorithm with total update time $tilde{O}(mn^{3/4})$. However, both algorithms are restricted to undirected, unweighted graphs. We present the emph{first} deterministic algorithm for emph{weighted} undirected graphs to go beyond the $O(mn)$ bound. The total update time is $tilde{O}(n^2 log(W))$.

قيم البحث

اقرأ أيضاً

In this thesis, we present new techniques to deal with fundamental algorithmic graph problems where graphs are directed and partially dynamic, i.e. undergo either a sequence of edge insertions or deletions: - Single-Source Reachability (SSR), - S trongly-Connected Components (SCCs), and - Single-Source Shortest Paths (SSSP). These problems have recently received an extraordinary amount of attention due to their role as subproblems in various more complex and notoriously hard graph problems, especially to compute flows, bipartite matchings and cuts. Our techniques lead to the first near-optimal data structures for these problems in various different settings. Letting $n$ denote the number of vertices in the graph and by $m$ the maximum number of edges in any version of the graph, we obtain - the first randomized data structure to maintain SSR and SCCs in near-optimal total update time $tilde{O}(m)$ in a graph undergoing edge deletions. - the first randomized data structure to maintain SSSP in partially dynamic graphs in total update time $tilde{O}(n^2)$ which is near-optimal in dense graphs. - the first deterministic data structures for SSR and SCC for graphs undergoing edge deletions, and for SSSP in partially dynamic graphs that improve upon the $O(mn)$ total update time by Even and Shiloach from 1981 that is often considered to be a fundamental barrier.
77 - Julia Chuzhoy 2021
We study the decremental All-Pairs Shortest Paths (APSP) problem in undirected edge-weighted graphs. The input to the problem is an $n$-vertex $m$-edge graph $G$ with non-negative edge lengths, that undergoes a sequence of edge deletions. The goal is to support approximate shortest-path queries: given a pair $x,y$ of vertices of $G$, return a path $P$ connecting $x$ to $y$, whose length is within factor $alpha$ of the length of the shortest $x$-$y$ path, in time $tilde O(|E(P)|)$, where $alpha$ is the approximation factor of the algorithm. APSP is one of the most basic and extensively studied dynamic graph problems. A long line of work culminated in the algorithm of [Chechik, FOCS 2018] with near optimal guarantees for the oblivious-adversary setting. Unfortunately, adaptive-adversary setting is still poorly understood. For unweighted graphs, the algorithm of [Henzinger, Krinninger and Nanongkai, FOCS 13, SICOMP 16] achieves a $(1+epsilon)$-approximation with total update time $tilde O(mn/epsilon)$; the best current total update time of $n^{2.5+O(epsilon)}$ is achieved by the deterministic algorithm of [Chuzhoy, Saranurak, SODA21], with $2^{O(1/epsilon)}$-multiplicative and $2^{O(log^{3/4}n/epsilon)}$-additive approximation. To the best of our knowledge, for arbitrary non-negative edge weights, the fastest current adaptive-update algorithm has total update time $O(n^{3}log L/epsilon)$, achieving a $(1+epsilon)$-approximation. Here, L is the ratio of longest to shortest edge lengths. Our main result is a deterministic algorithm for decremental APSP in undirected edge-weighted graphs, that, for any $Omega(1/loglog m)leq epsilon< 1$, achieves approximation factor $(log m)^{2^{O(1/epsilon)}}$, with total update time $Oleft (m^{1+O(epsilon)}cdot (log m)^{O(1/epsilon^2)}cdot log Lright )$.
In the decremental $(1+epsilon)$-approximate Single-Source Shortest Path (SSSP) problem, we are given a graph $G=(V,E)$ with $n = |V|, m = |E|$, undergoing edge deletions, and a distinguished source $s in V$, and we are asked to process edge deletion s efficiently and answer queries for distance estimates $widetilde{mathbf{dist}}_G(s,v)$ for each $v in V$, at any stage, such that $mathbf{dist}_G(s,v) leq widetilde{mathbf{dist}}_G(s,v) leq (1+ epsilon)mathbf{dist}_G(s,v)$. In the decremental $(1+epsilon)$-approximate All-Pairs Shortest Path (APSP) problem, we are asked to answer queries for distance estimates $widetilde{mathbf{dist}}_G(u,v)$ for every $u,v in V$. In this article, we consider the problems for undirected, unweighted graphs. We present a new emph{deterministic} algorithm for the decremental $(1+epsilon)$-approximate SSSP problem that takes total update time $O(mn^{0.5 + o(1)})$. Our algorithm improves on the currently best algorithm for dense graphs by Chechik and Bernstein [STOC 2016] with total update time $tilde{O}(n^2)$ and the best existing algorithm for sparse graphs with running time $tilde{O}(n^{1.25}sqrt{m})$ [SODA 2017] whenever $m = O(n^{1.5 - o(1)})$. In order to obtain this new algorithm, we develop several new techniques including improved decremental cover data structures for graphs, a more efficient notion of the heavy/light decomposition framework introduced by Chechik and Bernstein and the first clustering technique to maintain a dynamic emph{sparse} emulator in the deterministic setting. As a by-product, we also obtain a new simple deterministic algorithm for the decremental $(1+epsilon)$-approximate APSP problem with near-optimal total running time $tilde{O}(mn /epsilon)$ matching the time complexity of the sophisticated but rather involved algorithm by Henzinger, Forster and Nanongkai [FOCS 2013].
In the decremental single-source shortest paths (SSSP) problem, the input is an undirected graph $G=(V,E)$ with $n$ vertices and $m$ edges undergoing edge deletions, together with a fixed source vertex $sin V$. The goal is to maintain a data structur e that supports shortest-path queries: given a vertex $vin V$, quickly return an (approximate) shortest path from $s$ to $v$. The decremental all-pairs shortest paths (APSP) problem is defined similarly, but now the shortest-path queries are allowed between any pair of vertices of $V$. Both problems have been studied extensively since the 80s, and algorithms with near-optimal total update time and query time have been discovered for them. Unfortunately, all these algorithms are randomized and, more importantly, they need to assume an oblivious adversary. Our first result is a deterministic algorithm for the decremental SSSP problem on weighted graphs with $O(n^{2+o(1)})$ total update time, that supports $(1+epsilon)$-approximate shortest-path queries, with query time $O(|P|cdot n^{o(1)})$, where $P$ is the returned path. This is the first $(1+epsilon)$-approximation algorithm against an adaptive adversary that supports shortest-path queries in time below $O(n)$, that breaks the $O(mn)$ total update time bound of the classical algorithm of Even and Shiloah from 1981. Our second result is a deterministic algorithm for the decremental APSP problem on unweighted graphs that achieves total update time $O(n^{2.5+delta})$, for any constant $delta>0$, supports approximate distance queries in $O(loglog n)$ time; the algorithm achieves an $O(1)$-multiplicative and $n^{o(1)}$-additive approximation on the path length. All previous algorithms for APSP either assume an oblivious adversary or have an $Omega(n^{3})$ total update time when $m=Omega(n^{2})$.
We consider the problem of computing shortest paths in weighted unit-disk graphs in constant dimension $d$. Although the single-source and all-pairs variants of this problem are well-studied in the plane case, no non-trivial exact distance oracles fo r unit-disk graphs have been known to date, even for $d=2$. The classical result of Sedgewick and Vitter [Algorithmica 86] shows that for weighted unit-disk graphs in the plane the $A^*$ search has average-case performance superior to that of a standard shortest path algorithm, e.g., Dijkstras algorithm. Specifically, if the $n$ corresponding points of a weighted unit-disk graph $G$ are picked from a unit square uniformly at random, and the connectivity radius is $rin (0,1)$, $A^*$ finds a shortest path in $G$ in $O(n)$ expected time when $r=Omega(sqrt{log n/n})$, even though $G$ has $Theta((nr)^2)$ edges in expectation. In other words, the work done by the algorithm is in expectation proportional to the number of vertices and not the number of edges. In this paper, we break this natural barrier and show even stronger sublinear time results. We propose a new heuristic approach to computing point-to-point exact shortest paths in unit-disk graphs. We analyze the average-case behavior of our heuristic using the same random graph model as used by Sedgewick and Vitter and prove it superior to $A^*$. Specifically, we show that, if we are able to report the set of all $k$ points of $G$ from an arbitrary rectangular region of the plane in $O(k + t(n))$ time, then a shortest path between arbitrary two points of such a random graph on the plane can be found in $O(1/r^2 + t(n))$ expected time. In particular, the state-of-the-art range reporting data structures imply a sublinear expected bound for all $r=Omega(sqrt{log n/n})$ and $O(sqrt{n})$ expected bound for $r=Omega(n^{-1/4})$ after only near-linear preprocessing of the point set.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا