ﻻ يوجد ملخص باللغة العربية
A general class of time-varying regression models is considered in this paper. We estimate the regression coefficients by using local linear M-estimation. For these estimators, weak Bahadur representations are obtained and are used to construct simultaneous confidence bands. For practical implementation, we propose a bootstrap based method to circumvent the slow logarithmic convergence of the theoretical simultaneous bands. Our results substantially generalize and unify the treatments for several time-varying regression and auto-regression models. The performance for ARCH and GARCH models is studied in simulations and a few real-life applications of our study are presented through analysis of some popular financial datasets.
Conditional heteroscedastic (CH) models are routinely used to analyze financial datasets. The classical models such as ARCH-GARCH with time-invariant coefficients are often inadequate to describe frequent changes over time due to market variability.
This paper considers inference for a function of a parameter vector in a partially identified model with many moment inequalities. This framework allows the number of moment conditions to grow with the sample size, possibly at exponential rates. Our
This paper studies inference in linear models whose parameter of interest is a high-dimensional matrix. We focus on the case where the high-dimensional matrix parameter is well-approximated by a ``spiked low-rank matrix whose rank grows slowly compar
In this paper we study methods for estimating causal effects in settings with panel data, where some units are exposed to a treatment during some periods and the goal is estimating counterfactual (untreated) outcomes for the treated unit/period combi
Simultaneous, post-hoc inference is desirable in large-scale hypotheses testing as it allows for exploration of data while deciding on criteria for proclaiming discoveries. It was recently proved that all admissible post-hoc inference methods for the