ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous inference for time-varying models

92   0   0.0 ( 0 )
 نشر من قبل Sayar Karmakar
 تاريخ النشر 2020
  مجال البحث اقتصاد
والبحث باللغة English




اسأل ChatGPT حول البحث

A general class of time-varying regression models is considered in this paper. We estimate the regression coefficients by using local linear M-estimation. For these estimators, weak Bahadur representations are obtained and are used to construct simultaneous confidence bands. For practical implementation, we propose a bootstrap based method to circumvent the slow logarithmic convergence of the theoretical simultaneous bands. Our results substantially generalize and unify the treatments for several time-varying regression and auto-regression models. The performance for ARCH and GARCH models is studied in simulations and a few real-life applications of our study are presented through analysis of some popular financial datasets.

قيم البحث

اقرأ أيضاً

Conditional heteroscedastic (CH) models are routinely used to analyze financial datasets. The classical models such as ARCH-GARCH with time-invariant coefficients are often inadequate to describe frequent changes over time due to market variability. However we can achieve significantly better insight by considering the time-varying analogues of these models. In this paper, we propose a Bayesian approach to the estimation of such models and develop computationally efficient MCMC algorithm based on Hamiltonian Monte Carlo (HMC) sampling. We also established posterior contraction rates with increasing sample size in terms of the average Hellinger metric. The performance of our method is compared with frequentist estimates and estimates from the time constant analogues. To conclude the paper we obtain time-varying parameter estimates for some popular Forex (currency conversion rate) and stock market datasets.
This paper considers inference for a function of a parameter vector in a partially identified model with many moment inequalities. This framework allows the number of moment conditions to grow with the sample size, possibly at exponential rates. Our main motivating application is subvector inference, i.e., inference on a single component of the partially identified parameter vector associated with a treatment effect or a policy variable of interest. Our inference method compares a MinMax test statistic (minimum over parameters satisfying $H_0$ and maximum over moment inequalities) against critical values that are based on bootstrap approximations or analytical bounds. We show that this method controls asymptotic size uniformly over a large class of data generating processes despite the partially identified many moment inequality setting. The finite sample analysis allows us to obtain explicit rates of convergence on the size control. Our results are based on combining non-asymptotic approximations and new high-dimensional central limit theorems for the MinMax of the components of random matrices. Unlike the previous literature on functional inference in partially identified models, our results do not rely on weak convergence results based on Donskers class assumptions and, in fact, our test statistic may not even converge in distribution. Our bootstrap approximation requires the choice of a tuning parameter sequence that can avoid the excessive concentration of our test statistic. To this end, we propose an asymptotically valid data-driven method to select this tuning parameter sequence. This method generalizes the selection of tuning parameter sequences to problems outside the Donskers class assumptions and may also be of independent interest. Our procedures based on self-normalized moderate deviation bounds are relatively more conservative but easier to implement.
This paper studies inference in linear models whose parameter of interest is a high-dimensional matrix. We focus on the case where the high-dimensional matrix parameter is well-approximated by a ``spiked low-rank matrix whose rank grows slowly compar ed to its dimensions and whose nonzero singular values diverge to infinity. We show that this framework covers a broad class of models of latent-variables which can accommodate matrix completion problems, factor models, varying coefficient models, principal components analysis with missing data, and heterogeneous treatment effects. For inference, we propose a new ``rotation-debiasing method for product parameters initially estimated using nuclear norm penalization. We present general high-level results under which our procedure provides asymptotically normal estimators. We then present low-level conditions under which we verify the high-level conditions in a treatment effects example.
In this paper we study methods for estimating causal effects in settings with panel data, where some units are exposed to a treatment during some periods and the goal is estimating counterfactual (untreated) outcomes for the treated unit/period combi nations. We propose a class of matrix completion estimators that uses the observed elements of the matrix of control outcomes corresponding to untreated unit/periods to impute the missing elements of the control outcome matrix, corresponding to treated units/periods. This leads to a matrix that well-approximates the original (incomplete) matrix, but has lower complexity according to the nuclear norm for matrices. We generalize results from the matrix completion literature by allowing the patterns of missing data to have a time series dependency structure that is common in social science applications. We present novel insights concerning the connections between the matrix completion literature, the literature on interactive fixed effects models and the literatures on program evaluation under unconfoundedness and synthetic control methods. We show that all these estimators can be viewed as focusing on the same objective function. They differ solely in the way they deal with identification, in some cases solely through regularization (our proposed nuclear norm matrix completion estimator) and in other cases primarily through imposing hard restrictions (the unconfoundedness and synthetic control approaches). The proposed method outperforms unconfoundedness-based or synthetic control estimators in simulations based on real data.
Simultaneous, post-hoc inference is desirable in large-scale hypotheses testing as it allows for exploration of data while deciding on criteria for proclaiming discoveries. It was recently proved that all admissible post-hoc inference methods for the number of true discoveries must be based on closed testing. In this paper we investigate tractable and efficient closed testing with local tests of different properties, such as monotonicty, symmetry and separability, meaning that the test thresholds a monotonic or symmetric function or a function of sums of test scores for the individual hypotheses. This class includes well-known global null tests by Fisher, Stouffer and Ruschendorf, as well as newly proposed ones based on harmonic means and Cauchy combinations. Under monotonicity, we propose a new linear time statistic (coma) that quantifies the cost of multiplicity adjustments. If the tests are also symmetric and separable, we develop several fast (mostly linear-time) algorithms for post-hoc inference, making closed testing tractable. Paired with recent advances in global null tests based on generalized means, our work immediately instantiates a series of simultaneous inference methods that can handle many complex dependence structures and signal compositions. We provide guidance on choosing from these methods via theoretical investigation of the conservativeness and sensitivity for different local tests, as well as simulations that find analogous behavior for local tests and full closed testing. One result of independent interest is the following: if $P_1,dots,P_d$ are $p$-values from a multivariate Gaussian with arbitrary covariance, then their arithmetic average P satisfies $Pr(P leq t) leq t$ for $t leq frac{1}{2d}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا