ترغب بنشر مسار تعليمي؟ اضغط هنا

A two-dimensional electron gas based on a 5s oxide with high room-temperature mobility and strain sensitivity

289   0   0.0 ( 0 )
 نشر من قبل Zhiqi Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The coupling of optical and electronic degrees of freedom together with quantum confinement in low-dimensional electron systems is particularly interesting for achieving exotic functionalities in strongly correlated oxide electronics. Recently, high room-temperature mobility has been achieved for a large bandgap transparent oxide - BaSnO$_3$ upon extrinsic La or Sb doping, which has excited significant research attention. In this work, we report the observation of room-temperature ferromagnetism in BaSnO$_3$ thin films and the realization of a two-dimensional electron gas (2DEG) on the surface of transparent BaSnO$_3$ via oxygen vacancy creation, which exhibits a high carrier density of $sim 7.72*10^{14} /{rm cm}^2$ and a high room-temperature mobility of ~18 cm$^2$/V/s. Such a 2DEG is rather sensitive to strain and a less than 0.1% in-plane biaxial compressive strain leads to a giant resistance enhancement of 350% (more than 540 kOhm/Square) at room temperature. Thus, this work creates a new path to exploring the physics of low-dimensional oxide electronics and devices applicable at room temperature.



قيم البحث

اقرأ أيضاً

The interaction between a single hole and a two-dimensional, paramagnetic, homogeneous electron gas is studied using diffusion quantum Monte Carlo simulations. Calculations of the electron-hole correlation energy, pair-correlation function, and the e lectron-hole center-of-mass momentum density are reported for a range of electron--hole mass ratios and electron densities. We find numerical evidence of a crossover from a collective Mahan exciton to a trion-dominated state in a density range in agreement with that found in recent experiments on quantum well heterostructures.
Electric field effect in electronic double layer transistor (EDLT) configuration with ionic liquids as the dielectric materials is a powerful means of exploring various properties in different materials. Here we demonstrate the modulation of electric al transport properties and extremely high mobility of two-dimensional electron gas at LaAlO$_3$/SrTiO$_3$ (LAO/STO) interface through ionic liquid-assisted electric field effect. By changing the gate voltages, the depletion of charge carrier and the resultant enhancement of electron mobility up to 19380 cm$^2$/Vs are realized, leading to quantum oscillations of the conductivity at the LAO/STO interface. The present results suggest that high-mobility oxide interfaces which exhibit quantum phenomena could be obtained by ionic liquid-assisted field effect.
SmB6 is a strongly correlated mixed-valence Kondo insulator with a newly discovered surface state, proposed to be of non-trivial topological origin. However, the surface state dominates electrical conduction only below T* ~ 4 K limiting its scientifi c investigation and device application. Here, we report the enhancement of T * in SmB6 under the application of tensile strain. With 0.7% tensile strain we report surface dominated conduction at up to a temperature of 240 K, persisting even after the strain has been removed. This can be explained in the framework of strain-tuned temporal and spatial fluctuations of f-electron configurations, which might be generally applied to other mixed-valence materials. We note that this amount of strain can be indued in epitaxial SmB6 films via substrate in potential device applications.
We report the observation of a metal-insulator transition in a two-dimensional electron gas in silicon. By applying substrate bias, we have varied the mobility of our samples, and observed the creation of the metallic phase when the mobility was high enough ($mu ~> 1 m^2/Vs$), consistent with the assertion that this transition is driven by electron-electron interactions. In a perpendicular magnetic field, the magnetoconductance is positive in the vicinity of the transition, but negative elsewhere. Our experiment suggests that such behavior results from a decrease of the spin-dependent part of the interaction in the vicinity of the transition.
Two-dimensional electron gases (2DEGs) in SrTiO$_3$ have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Her e we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the $d$-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital, and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally-enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO$_3$-based 2DEGs, and yield new microscopic insights on their functional properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا