ترغب بنشر مسار تعليمي؟ اضغط هنا

Liquid-Gated High Mobility and Quantum Oscillation of the Two-Dimensional Electron Gas at an Oxide Interface

67   0   0.0 ( 0 )
 نشر من قبل Ariando
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electric field effect in electronic double layer transistor (EDLT) configuration with ionic liquids as the dielectric materials is a powerful means of exploring various properties in different materials. Here we demonstrate the modulation of electrical transport properties and extremely high mobility of two-dimensional electron gas at LaAlO$_3$/SrTiO$_3$ (LAO/STO) interface through ionic liquid-assisted electric field effect. By changing the gate voltages, the depletion of charge carrier and the resultant enhancement of electron mobility up to 19380 cm$^2$/Vs are realized, leading to quantum oscillations of the conductivity at the LAO/STO interface. The present results suggest that high-mobility oxide interfaces which exhibit quantum phenomena could be obtained by ionic liquid-assisted field effect.

قيم البحث

اقرأ أيضاً

The coupling of optical and electronic degrees of freedom together with quantum confinement in low-dimensional electron systems is particularly interesting for achieving exotic functionalities in strongly correlated oxide electronics. Recently, high room-temperature mobility has been achieved for a large bandgap transparent oxide - BaSnO$_3$ upon extrinsic La or Sb doping, which has excited significant research attention. In this work, we report the observation of room-temperature ferromagnetism in BaSnO$_3$ thin films and the realization of a two-dimensional electron gas (2DEG) on the surface of transparent BaSnO$_3$ via oxygen vacancy creation, which exhibits a high carrier density of $sim 7.72*10^{14} /{rm cm}^2$ and a high room-temperature mobility of ~18 cm$^2$/V/s. Such a 2DEG is rather sensitive to strain and a less than 0.1% in-plane biaxial compressive strain leads to a giant resistance enhancement of 350% (more than 540 kOhm/Square) at room temperature. Thus, this work creates a new path to exploring the physics of low-dimensional oxide electronics and devices applicable at room temperature.
119 - Y. Z. Chen , N. Bovet , F. Trier 2013
The discovery of two-dimensional electron gases (2DEGs) at the heterointerface between two insulating perovskite-type oxides, such as LaAlO3 and SrTiO3, provides opportunities for a new generation of all-oxide electronic and photonic devices. However , significant improvement of the interfacial electron mobility beyond the current value of approximately 1,000 cm2V-1s-1 (at low temperatures), remains a key challenge for fundamental as well as applied research of complex oxides. Here, we present a new type of 2DEG created at the heterointerface between SrTiO3 and a spinel {gamma}-Al2O3 epitaxial film with excellent quality and compatible oxygen ions sublattices. This spinel/perovskite oxide heterointerface exhibits electron mobilities more than one order of magnitude higher than those of perovskite/perovskite oxide interfaces, and demonstrates unambiguous two-dimensional conduction character as revealed by the observation of quantum magnetoresistance oscillations. Furthermore, we find that the spinel/perovskite 2DEG results from interface-stabilized oxygen vacancies and is confined within a layer of 0.9 nm in proximity to the heterointerface. Our findings pave the way for studies of mesoscopic physics with complex oxides and design of high-mobility all-oxide electronic devices.
Carrier density and disorder are two crucial parameters that control the properties of correlated two-dimensional electron systems. In order to disentangle their individual contributions to quantum phenomena, independent tuning of these two parameter s is required. Here, by utilizing a hybrid liquid/solid electric dual-gate geometry acting on the conducting LaAlO3/SrTiO3 heterointerface, we obtain an additional degree of freedom to strongly modify the electron confinement profile and thus the strength of interfacial scattering, independent from the carrier density. A dual-gate controlled nonlinear Hall effect is a direct manifestation of this profile, which can be quantitatively understood by a Poisson-Schrodinger subband model. In particular, the large nonlinear dielectric response of SrTiO3 enables a very wide range of tunable density and disorder, far beyond that for conventional semiconductors. Our study provides a broad framework for understanding various reported phenomena at the LaAlO3/SrTiO3 interface.
The discovery of two-dimensional electron gases (2DEGs) in SrTiO3-based heterostructures provides new opportunities for nanoelectronics. Herein, we create a new type of oxide 2DEG by the epitaxial-strain-induced polarization at an otherwise nonpolar perovskite-type interface of CaZrO3/SrTiO3. Remarkably, this heterointerface is atomically sharp, and exhibits a high electron mobility exceeding 60,000 cm2V-1s-1 at low temperatures. The 2DEG carrier density exhibits a critical dependence on the film thickness, in good agreement with the polarization induced 2DEG scheme.
147 - Y. Z. Chen , N. Pryds , J. R. Sun 2013
The discovery of two-dimensional electron gas (2DEG) at well-defined interfaces between insulating complex oxides provides the opportunity for a new generation of all-oxide electronics. Particularly, the 2DEG at the interface between two perovskite i nsulators represented by the formula of ABO3, such as LaAlO3 and SrTiO3, has attracted significant attention. In recent years, progresses have been made to decipher the puzzle of the origin of interface conduction, to design new types of oxide interfaces, and to improve the interfacial carrier mobility significantly. These achievements open the door to explore fundamental as well as applied physics of complex oxides. Here, we review our recent experimental work on metallic and insulating interfaces controlled by interfacial redox reactions in SrTiO3-based heterostructures. Due to the presence of oxygen-vacancies at the SrTiO3 surface, metallic conduction can be created at room temperature in perovskite-type interfaces when the overlayer oxide ABO3 involves Al, Ti, Zr, or Hf elements at the B-sites. Furthermore, relying on interface-stabilized oxygen vacancies, we have created a new type of 2DEG at the heterointerface between SrTiO3 and a spinel {gamma}-Al2O3 epitaxial film with compatible oxygen ions sublattices. The spinel/perovskite oxide 2DEG exhibits an electron mobility exceeding 100,000 cm2V-1s-1, more than one order of magnitude higher than those of hitherto investigated perovskite-type interfaces. Our findings pave the way for design of high-mobility all-oxide electronic devices and open a route towards studies of mesoscopic physics with complex oxides.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا