ﻻ يوجد ملخص باللغة العربية
Nowadays more and more applications can benefit from edge-based text-to-speech (TTS). However, most existing TTS models are too computationally expensive and are not flexible enough to be deployed on the diverse variety of edge devices with their equally diverse computational capacities. To address this, we propose FBWave, a family of efficient and scalable neural vocoders that can achieve optimal performance-efficiency trade-offs for different edge devices. FBWave is a hybrid flow-based generative model that combines the advantages of autoregressive and non-autoregressive models. It produces high quality audio and supports streaming during inference while remaining highly computationally efficient. Our experiments show that FBWave can achieve similar audio quality to WaveRNN while reducing MACs by 40x. More efficient variants of FBWave can achieve up to 109x fewer MACs while still delivering acceptable audio quality. Audio demos are available at https://bichenwu09.github.io/vocoder_demos.
In this paper, we present a streaming end-to-end speech recognition model based on Monotonic Chunkwise Attention (MoCha) jointly trained with enhancement layers. Even though the MoCha attention enables streaming speech recognition with recognition ac
Automatic speaker verification (ASV), one of the most important technology for biometric identification, has been widely adopted in security-critical applications, including transaction authentication and access control. However, previous work has sh
This paper introduces a novel adversarial algorithm for attacking the state-of-the-art speech-to-text systems, namely DeepSpeech, Kaldi, and Lingvo. Our approach is based on developing an extension for the conventional distortion condition of the adv
This paper investigates how to leverage a DurIAN-based average model to enable a new speaker to have both accurate pronunciation and fluent cross-lingual speaking with very limited monolingual data. A weakness of the recently proposed end-to-end text
In this paper, we present a novel two-pass approach to unify streaming and non-streaming end-to-end (E2E) speech recognition in a single model. Our model adopts the hybrid CTC/attention architecture, in which the conformer layers in the encoder are m