ﻻ يوجد ملخص باللغة العربية
$eta$ Carinae is an extraordinary massive star famous for its 19th century Great Eruption and the surrounding Homunculus nebula ejected in that event. The cause of this eruption has been the centre of a long-standing mystery. Recent observations, including light-echo spectra of the eruption, suggest that it most likely resulted from a stellar merger in an unstable triple system. Here we present a detailed set of theoretical calculations for this scenario; from the dynamics of unstable triple systems and the mass ejection from close binary encounters, to the mass outflow from the eruption caused by the stellar merger and the post-merger wind phase. In our model the bipolar post-merger wind is the primary agent for creating the Homunculus, as it sweeps up external eruption ejecta into a thin shell. Our simulations reproduce many of the key aspects of the shape and kinematics of both the Homunculus nebula and its complex surrounding structure, providing strong support for the merger-in-a-triple scenario.
We present follow-up optical imaging and spectroscopy of one of the light echoes of $eta$ Carinaes 19th-century Great Eruption discovered by Rest et al. (2012). By obtaining images and spectra at the same light echo position between 2011 and 2014, we
In our ongoing study of eta Carinaes light echoes, there is a relatively bright echo that has been fading slowly, reflecting the 1845-1858 plateau of the eruption. A separate paper discusses its detailed evolution, but here we highlight one important
Aims. Every 5.5 years eta Cars light curve and spectrum change remarkably across all observed wavelength bands. We compare the recent spectroscopic event in mid-2014 to the events in 2003 and 2009 and investigate long-term trends. Methods. Eta Car wa
We present multi-epoch photometry and spectroscopy of a light echo from eta Carinaes 19th century Great Eruption. This echo shows a steady decline over a decade, sampling the 1850s plateau of the eruption. Spectra show the bulk outflow speed increasi
During the years 1838-1858, the very massive star {eta} Carinae became the prototype supernova impostor: it released nearly as much light as a supernova explosion and shed an impressive amount of mass, but survived as a star.1 Based on a light-echo s