ﻻ يوجد ملخص باللغة العربية
During the years 1838-1858, the very massive star {eta} Carinae became the prototype supernova impostor: it released nearly as much light as a supernova explosion and shed an impressive amount of mass, but survived as a star.1 Based on a light-echo spectrum of that event, Rest et al.2 conclude that a new physical mechanism is required to explain it, because the gas outflow appears cooler than theoretical expectations. Here we note that (1) theory predicted a substantially lower temperature than they quoted, and (2) their inferred observational value is quite uncertain. Therefore, analyses so far do not reveal any significant contradiction between the observed spectrum and most previous discussions of the Great Eruption and its physics.
Eta Carinae (Eta Car) is one of the most massive binary stars in the Milky Way. It became the second-brightest star in the sky during its mid-19th century Great Eruption, but then faded from view (with only naked-eye estimates of brightness). Its eru
In our ongoing study of eta Carinaes light echoes, there is a relatively bright echo that has been fading slowly, reflecting the 1845-1858 plateau of the eruption. A separate paper discusses its detailed evolution, but here we highlight one important
Aims. Every 5.5 years eta Cars light curve and spectrum change remarkably across all observed wavelength bands. We compare the recent spectroscopic event in mid-2014 to the events in 2003 and 2009 and investigate long-term trends. Methods. Eta Car wa
We present follow-up optical imaging and spectroscopy of one of the light echoes of $eta$ Carinaes 19th-century Great Eruption discovered by Rest et al. (2012). By obtaining images and spectra at the same light echo position between 2011 and 2014, we
We present multi-epoch photometry and spectroscopy of a light echo from eta Carinaes 19th century Great Eruption. This echo shows a steady decline over a decade, sampling the 1850s plateau of the eruption. Spectra show the bulk outflow speed increasi