ترغب بنشر مسار تعليمي؟ اضغط هنا

A tidally induced global corrugation pattern in an external disc galaxy similar to the Milky Way

97   0   0.0 ( 0 )
 نشر من قبل Facundo A. G\\'omez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the two dimensional (2D) line-of-sight velocity ($V_{rm los}$) field of the low-inclination, late-type galaxy VV304a. The resulting 2D kinematic map reveals a global, coherent and extended perturbation that is likely associated with a recent interaction with the massive companion VV304b. We use multi-band imaging and a suite of test particle simulations to quantify the plausible strength of in-plane flows due to non-axisymmetric perturbations and show that the observed velocity flows are much too large to be driven either by spiral structure nor by a bar. We use fully cosmological hydrodynamical simulations to characterize the contribution from in- and off-plane velocity flows to the $V_{rm los}$ field of recently interacting galaxy pairs like the VV304 system. We show that, for recently perturbed low-inclination galactic discs, the structure of the residual velocity field, after subtraction of an axisymmetric rotation model, can be dominated by vertical flows. Our results indicate that the $V_{rm los}$ perturbations in VV304a are consistent with a corrugation pattern. Its $V_{rm los}$ map suggests the presence of a structure similar to the Monoceros ring seen in the Milky Way. Our study highlights the possibility of addressing important questions regarding the nature and origin of vertical perturbations by measuring the line-of-sight velocities in low-inclination nearby galaxies.

قيم البحث

اقرأ أيضاً

223 - Ortwin Gerhard 2010
A brief review is given of different methods used to determine the pattern speeds of the Galactic bar and spiral arms. The Galactic bar rotates rapidly, with corotation about halfway between the Galactic center and the Sun, and outer Lindblad resonan ce not far from the solar orbit, R0. The Galactic spiral arms currently rotate with a distinctly slower pattern speed, such that corotation is just outside R0. Both structures therefore seem dynamically decoupled.
The Eastern Banded Structure (EBS) and Hydra~I halo overdensity are very nearby (d $sim$ 10 kpc) objects discovered in SDSS data. Previous studies of the region have shown that EBS and Hydra I are spatially coincident, cold structures at the same dis tance, suggesting that Hydra I may be the EBSs progenitor. We combine new wide-field DECam imaging and MMT/Hectochelle spectroscopic observations of Hydra I with SDSS archival spectroscopic observations to quantify Hydra Is present-day chemodynamical properties, and to infer whether it originated as a star cluster or dwarf galaxy. While previous work using shallow SDSS imaging assumed a standard old, metal-poor stellar population, our deeper DECam imaging reveals that Hydra~I has a thin, well-defined main sequence turnoff of intermediate age ($sim 5-6$ Gyr) and metallicity ([Fe/H] = $-0.9$ dex). We measure statistically significant spreads in both the iron and alpha-element abundances of $sigma_{[Fe/H]} = 0.13 pm 0.02$ dex and $sigma_{[alpha/{rm Fe}]} = 0.09 pm 0.03$ dex, respectively, and place upper limits on both the rotation and its proper motion. Hydra~Is intermediate age and [Fe/H] -- as well as its low [$alpha$/Fe], apparent [Fe/H] spread, and present-day low luminosity -- suggest that its progenitor was a dwarf galaxy, which subsequently lost more than $99.99%$ of its stellar mass.
88 - P. Di Matteo 2016
The Galactic bulge, that is the prominent out-of-plane over-density present in the inner few kiloparsecs of the Galaxy, is a complex structure, as the morphology, kinematics, chemistry and ages of its stars indicate. To understand the nature of its m ain components -- those at [Fe/H] >~ -1 dex -- it is necessary to make an inventory of the stellar populations of the Galactic disc(s), and of their borders : the chemistry of the disc at the solar vicinity, well known from detailed studies of stars over many years, is not representative of the whole disc. This finding, together with the recent revisions of the mass and sizes of the thin and thick discs, constitutes a major step in understanding the bulge complexity. N-body models of a boxy/peanut-shaped bulge formed from a thin disc through the intermediary of a bar have been successful in interpreting a number of global properties of the Galactic bulge, but they fail in reproducing the detailed chemo-kinematic relations satisfied by its components and their morphology. It is only by adding the thick disc to the picture that we can understand the nature of the Galactic bulge.
Using a sample of red giant stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 16, we infer the conditional distribution $p([alpha/text{Fe}],|,[text{Fe/H}])$ in the Milky Way disk for the $alpha$-elements Mg, O, Si, S, and Ca. In each bin of [Fe/H] and Galactocentric radius $R$, we model $p([alpha/text{Fe}])$ as a sum of two Gaussians, representing low-$alpha$ and high-$alpha$ populations with scale heights $z_1=0.45,text{kpc}$ and $z_2=0.95,text{kpc}$, respectively. By accounting for age-dependent and $z$-dependent selection effects in APOGEE, we infer the [$alpha$/Fe] distributions that would be found for a fair sample of long-lived stars covering all $z$. Near the Solar circle, this distribution is clearly bimodal at sub-solar [Fe/H], with the low-$alpha$ and high-$alpha$ peaks separated by a valley that is $sim 3$ times lower. In agreement with previous results, we find that the high-$alpha$ population is more prominent at smaller $R$, lower [Fe/H], and larger $|z|$, and that the sequence separation is smaller for Si and Ca than for Mg, O, and S. We find significant intrinsic scatter in [$alpha$/Fe] at fixed [Fe/H] for both the low-$alpha$ and high-$alpha$ populations, typically $sim 0.04$-dex. The means, dispersions, and relative amplitudes of this two-Gaussian description, and the dependence of these parameters on $R$, [Fe/H], and $alpha$-element, provide a quantitative target for chemical evolution models and a test for hydrodynamic simulations of disk galaxy formation. We argue that explaining the observed bimodality will probably require one or more sharp transitions in the disks gas accretion, star formation, or outflow history in addition to radial mixing of stellar populations.
102 - David G. Turner 2013
The nature of our Milky Way Galaxy is reexamined from an eclectic point of view. Evidence for a central bar, for example, is not reflected in the distribution of RR Lyrae variables in the central bulge [4,5], and it is not clear if either a 2-armed o r 4-armed spiral pattern is appropriate for the spiral arms. Radial velocity mapping of the Galaxy using radio H I, H II, or CO observations is compromised by the assumptions adopted for simple Galactic rotation. The Suns local standard of rest (LSR) velocity is $sim 14$ km s$^{-1}$ rather than 20 km s$^{-1}$, the local circular velocity is $251 pm 9$ km s$^{-1}$ rather than 220 km s$^{-1}$, and young groups of stars exhibit a 10--20 km s$^{-1}$ kick relative to what is expected from Galactic rotation. By implication, the same may be true for star-forming gas clouds affected by the Galaxys spiral density wave, raising concerns about their use for mapping spiral arms. Proper motion data in conjunction with the newly-estimated velocity components for the Suns motion imply a distance to the Galactic centre of $R_0=8.34pm0.27$ kpc, consistent with recent estimates which average $8.24pm0.09$ kpc. A cosinusoidal Galactic potential is not ruled out by observations of open star clusters. The planetary nebula cluster Bica 6, for example, has a near-escape orbit for a Newtonian potential, but a near-normal orbit in a cosinusoidal potential field. The nearby cluster Collinder 464 also displays unusually large tidal effects consistent with those expected for a cosinusoidal potential. A standard Newtonian version of the Virial Theorem for star clusters yields very reasonable masses ($sim 3 times 10^{11}M_{odot}$ and $sim 4 times 10^{11}M_{odot}$) for the Milky Way and M31 subgroups of the Local Group, respectively. A cosinusoidal relation should yield identical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا