ترغب بنشر مسار تعليمي؟ اضغط هنا

Pattern speeds in the Milky Way

288   0   0.0 ( 0 )
 نشر من قبل Ortwin Gerhard
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ortwin Gerhard




اسأل ChatGPT حول البحث

A brief review is given of different methods used to determine the pattern speeds of the Galactic bar and spiral arms. The Galactic bar rotates rapidly, with corotation about halfway between the Galactic center and the Sun, and outer Lindblad resonance not far from the solar orbit, R0. The Galactic spiral arms currently rotate with a distinctly slower pattern speed, such that corotation is just outside R0. Both structures therefore seem dynamically decoupled.



قيم البحث

اقرأ أيضاً

290 - Witold Maciejewski 2009
The method to study oscillating potentials of double bars, based on invariant loops, is introduced here in a new way, intended to be more intelligible. Using this method, I show how the orbital structure of a double-barred galaxy (nested bars) change s with the variation of nuclear bars pattern speed. Not all pattern speeds are allowed when the inner bar rotates in the same direction as the outer bar. Below certain minimum pattern speed orbital support for the inner bar abruptly disappears, while high values of this speed lead to loops that are increasingly round. For values between these two extremes, loops supporting the inner bar extend further out as its pattern speed decreases, and they become more eccentric and pulsate more. These findings do not apply to counter-rotating inner bars.
Studying our Galaxy, the Milky Way (MW), gives us a close-up view of the interplay between cosmology, dark matter, and galaxy formation. In the next decade our understanding of the MWs dynamics, stellar populations, and structure will undergo a revol ution thanks to planned and proposed astrometric, spectroscopic and photometric surveys, building on recent advances by the Gaia astrometric survey. Together, these new efforts will measure three-dimensional positions and velocities and numerous chemical abundances for stars to the MWs edge and well into the Local Group, leading to a complete multidimensional view of our Galaxy. Studies of the multidimensional Milky Way beyond the Gaia frontier---from the edge of the Galactic disk to the edge of our Galaxys dark matter halo---will unlock new scientific advances across astrophysics, from constraints on dark matter to insights into galaxy formation.
71 - Duncan A. Forbes 2020
The ages, metallicities, alpha-elements and integrals of motion of globular clusters (GCs) accreted by the Milky Way from disrupted satellites remain largely unchanged over time. Here we have used these conserved properties in combination to assign 7 6 GCs to 5 progenitor satellite galaxies -- one of which we dub the Koala dwarf galaxy. We fit a leaky-box chemical enrichment model to the age-metallicity distribution of GCs, deriving the effective yield and the formation epoch of each satellite. Based on scaling relations of GC counts we estimate the original halo mass, stellar mass and mean metallicity of each satellite. The total stellar mass of the 5 accreted satellites contributed around 10$^{9}$ M$_{odot}$ in stars to the growth of the Milky Way but over 50% of the Milky Ways GC system. The 5 satellites formed at very early times and were likely accreted 8--11 Gyr ago, indicating rapid growth for the Milky Way in its early evolution. We suggest that at least 3 satellites were originally nucleated, with the remnant nucleus now a GC of the Milky Way. Eleven GCs are also identified as having formed ex-situ but could not be assigned to a single progenitor satellite.
We apply a semi-analytic galaxy formation model to two high resolution cosmological N-body simulations to investigate analogues of the Milky Way system. We select these according to observed properties of the Milky Way rather than by halo mass as in most previous work. For disk-dominated central galaxies with stellar mass (5--7) x 10d10Msun, the median host halo mass is 1.4 x 10d12Msun, with 1 sigma dispersion in the range [0.86, 3.1] x 10d12Msun, consistent with dynamical measurements of the Milky Way halo mass. For any given halo mass, the probability of hosting a Milky Way system is low, with a maximum of ~20% in haloes of mass ~10d12Msun. The model reproduces the V-band luminosity function and radial profile of the bright (MV < -9) Milky Way satellites. Galaxy formation in low mass haloes is found to be highly stochastic, resulting in an extremely large scatter in the relation between MV (or stellar mass) for satellites and the depth of the subhalo potential well in which they live, as measured by the maximum of the rotation curve, Vmax. We conclude that the too big to fail problem is an artifact of selecting satellites in N-body simulations according to subhalo properties: in 10% of cases we find that three or fewer of the brightest (or most massive) satellites have Vmax > 30 km/s. Our model predicts that around half of the dark matter subhaloes with Vmax > 20 km/s host satellites fainter than MV = -9 and so may be missing from existing surveys.
Modified Newtonian dynamics (MOND) is an empirical theory originally proposed to explain the rotation curves of spiral galaxies by modifying the gravitational acceleration, rather than by invoking dark matter. Here,we set constraints on MOND using an up-to-date compilation of kinematic tracers of the Milky Way and a comprehensive collection of morphologies of the baryonic component in the Galaxy. In particular, we find that the so-called standard interpolating function cannot explain at the same time the rotation curve of the Milky Way and that of external galaxies for any of the baryonic models studied, while the so-called simple interpolating function can for a subset of models. Upcoming astronomical observations will refine our knowledge on the morphology of baryons and will ultimately confirm or rule out the validity of MOND in the Milky Way. We also present constraints on MOND-like theories without making any assumptions on the interpolating function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا