ترغب بنشر مسار تعليمي؟ اضغط هنا

Flavor-specific Interaction Favors Strong Neutrino Self-coupling in the Early Universe

68   0   0.0 ( 0 )
 نشر من قبل Anirban Das
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Anirban Das




اسأل ChatGPT حول البحث

Flavor-universal neutrino self-interaction has been shown to ease the tension between the values of the Hubble constant measured from early and late Universe data. We introduce a self-interaction structure that is flavor-specific in the three active neutrino framework. This is motivated by the stringent constraints on new secret interactions among electron and muon neutrinos from several laboratory experiments. Our study indicates the presence of a strongly interaction mode which implies a late-decoupling of the neutrinos just prior to matter radiation equality. Using the degeneracy of the coupling strength with other cosmological parameters, we explain the origin of this new mode as a result of better fit to certain features in the CMB data. We find that if only one or two of the three active neutrino flavors are interacting, then the statistical significance of the strongly-interacting neutrino mode increases substantially relative to the flavor-universal scenario. However, the central value of the coupling strength for this interaction mode does not change by any appreciable amount in the flavor-specific cases. We also briefly analyze a scenario with more than three neutrino species of which only one is self-interacting. In none of the cases, we find a large enough Hubble constant that could resolve the so-called Hubble tension.

قيم البحث

اقرأ أيضاً

We solve the problem of coherent Mikheyev-Smirnov-Wolfenstein (MSW) resonant active-to-sterile neutrino flavor conversion driven by an initial lepton number in the early universe. We find incomplete destruction of lepton number in this process and a sterile neutrino energy distribution with a distinctive cusp and high energy tail. These features imply alteration of the non-zero lepton number primordial nucleosynthesis paradigm when there exist sterile neutrinos with rest masses ~ 1 eV. This could result in better light element probes of (constraints on) these particles.
We perform a detailed study of the weak interactions of standard model neutrinos with the primordial plasma and their effect on the resonant production of sterile neutrino dark matter. Motivated by issues in cosmological structure formation on small scales, and reported X-ray signals that could be due to sterile neutrino decay, we consider $7$ keV-scale sterile neutrinos. Oscillation-driven production of such sterile neutrinos occurs at temperatures $T gtrsim 100$ MeV, where we study two significant effects of weakly charged species in the primordial plasma: (1) the redistribution of an input lepton asymmetry; (2) the opacity for active neutrinos. We calculate the redistribution analytically above and below the quark-hadron transition, and match with lattice QCD calculations through the transition. We estimate opacities due to tree level processes involving leptons and quarks above the quark-hadron transition, and the most important mesons below the transition. We report final sterile neutrino dark matter phase space densities that are significantly influenced by these effects, and yet relatively robust to remaining uncertainties in the nature of the quark-hadron transition. We also provide transfer functions for cosmological density fluctuations with cutoffs at $k simeq 10 h {rm Mpc}^{-1}$, that are relevant to galactic structure formation.
We examine medium-enhanced, neutrino scattering-induced decoherent production of dark matter candidate sterile neutrinos in the early universe. In cases with a significant net lepton number we find two resonances, where the effective in-medium mixing angles are large. We calculate the lepton number depletion-driven evolution of these resonances. We describe the dependence of this evolution on lepton numbers, sterile neutrino rest mass, and the active-sterile vacuum mixing angle. We find that this resonance evolution can result in relic sterile neutrino energy spectra with a generic form which is sharply peaked in energy. We compare our complete quantum kinetic equation treatment with the widely-used quantum Zeno ansatz.
Self-interaction in the active neutrinos is studied in the literature to alleviate the $H_0$ tension. Similar self-interaction can also explain the observed dips in the flux of the neutrinos coming from the distant astro-physical sources in IceCube d etectors. In contrast to the flavour universal neutrino interaction considered for solving the $H_0$ tension, which is ruled out from particle physics experiments, we consider flavour specific neutrino interactions. We show that the values of self-interaction coupling constant and mediator mass required for explaining the IceCube dips are inconsistent with the strong neutrino self-interactions preferred by the combination of BAO, HST and Planck data. However, the required amount of self-interaction between tau neutrinos ($ u_tau$) in inverted hierarchy for explaining IceCube dips is consistent with the moderate self-interaction region of cosmological bounds at 1-$sigma$ level. For the case of other interactions and hierarchies, the IceCube preferred amount of self-interaction is consistent with moderate self-interaction region of cosmological bounds at 2-$sigma$ level only.
Bose-Einstein condensation in the early universe is considered. The magnetic properties of a condensate of charged vector bosons are studied, showing that a ferromagnetic state is formed. As a consequence, the primeval plasma may be spontaneously mag netized inside macroscopically large domains and primordial magnetic fields can be generated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا