ترغب بنشر مسار تعليمي؟ اضغط هنا

TRAP: A temporal systematics model for improved direct detection of exoplanets at small angular separations

44   0   0.0 ( 0 )
 نشر من قبل Matthias Samland
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-contrast imaging surveys for exoplanet detection have shown giant planets at large separations to be rare. It is important to push towards detections at smaller separations, the part of the parameter space containing most planets. The performance of traditional methods for post-processing of pupil-stabilized observations decreases at smaller separations, due to the larger field-rotation required to displace a source on the detector in addition to the intrinsic difficulty of higher stellar contamination. We developed a method of extracting exoplanet signals that improves performance at small angular separations. A data-driven model of the temporal behavior of the systematics for each pixel can be created using reference pixels at a different position, assuming the underlying causes of the systematics are shared across multiple pixels. This is mostly true for the speckle pattern in high-contrast imaging. In our causal regression model, we simultaneously fit the model of a planet signal transiting over detector pixels and non-local reference lightcurves describing a basis of shared temporal trends of the speckle pattern to find the best fitting temporal model describing the signal. With our implementation of a spatially non-local, temporal systematics model, called TRAP, we show that it is possible to gain up to a factor of 6 in contrast at close separations ($<3lambda/D$) compared to a model based on spatial correlations between images displaced in time. We show that better temporal sampling resulting in significantly better contrasts. At short integration times for $beta$ Pic data, we increase the SNR of the planet by a factor of 4 compared to the spatial systematics model. Finally, we show that the temporal model can be used on unaligned data which has only been dark and flat corrected, without the need for further pre-processing.

قيم البحث

اقرأ أيضاً

We report the first independent, second-epoch (re-)detection of a directly-imaged protoplanet candidate. Using $L^prime$ high-contrast imaging of HD 100546 taken with the Near-Infrared Coronagraph and Imager (NICI) on Gemini South, we recover `HD 100 546 b with a position and brightness consistent with the original VLT/NaCo detection from Quanz et al, although data obtained after 2013 will be required to decisively demonstrate common proper motion. HD 100546 b may be spatially resolved, up to $approx$ 12-13 AU in diameter, and is embedded in a finger of thermal IR bright, polarized emission extending inwards to at least 0.3. Standard hot-start models imply a mass of $approx$ 15 $M_{J}$. But if HD 100546 b is newly formed or made visible by a circumplanetary disk, both of which are plausible, its mass is significantly lower (e.g. 1--7 $M_{J}$). Additionally, we discover a thermal IR-bright disk feature, possibly a spiral density wave, at roughly the same angular separation as HD 100546 b but 90 degrees away. Our interpretation of this feature as a spiral arm is not decisive, but modeling analyses using spiral density wave theory implies a wave launching point exterior to $approx$ 0.45 embedded within the visible disk structure: plausibly evidence for a second, hitherto unseen wide-separation planet. With one confirmed protoplanet candidate and evidence for 1--2 others, HD 100546 is an important evolutionary precursor to intermediate-mass stars with multiple super-jovian planets at moderate/wide separations like HR 8799.
One of the long-term goals of exoplanet science is the atmospheric characterization of dozens of small exoplanets in order to understand their diversity and search for habitable worlds and potential biosignatures. Achieving this goal requires a space mission of sufficient scale. We seek to quantify the exoplanet detection performance of a space-based mid-infrared nulling interferometer that measures the thermal emission of exoplanets. For this, we have developed an instrument simulator that considers all major astrophysical noise sources and coupled it with Monte Carlo simulations of a synthetic exoplanet population around main-sequence stars within 20 pc. This allows us to quantify the number (and types) of exoplanets that our mission concept could detect over a certain time period. Two different scenarios to distribute the observing time among the stellar targets are discussed and different apertures sizes and wavelength ranges are considered. Within a 2.5-year initial search phase, an interferometer consisting of four 2 m apertures covering a wavelength range between 4 and 18.5 $mu$m could detect up to ~550 exoplanets with radii between 0.5 and 6 R$_oplus$ with an integrated SNR$ge$7. At least ~160 of the detected exoplanets have radii $le$1.5 R$_oplus$. Depending on the observing scenario, ~25-45 rocky exoplanets (objects with radii between 0.5 and 1.5 $_{oplus}$) orbiting within the empirical habitable zone (eHZ) of their host stars are among the detections. With four times 3.5 m aperture size, the total number of detections can increase to up to ~770, including ~60-80 rocky, eHZ planets. With four times 1 m aperture size, the maximum detection yield is ~315 exoplanets, including $le$20 rocky, eHZ planets. In terms of predicted detection yield, such a mission can compete with large single-aperture reflected light missions. (abridged)
We propose a new approach for high-contrast imaging at the diffraction limit using segmented telescopes in a modest observation bandwidth. This concept, named spectroscopic fourth-order coronagraphy, is based on a fourth-order coronagraph with a foca l-plane mask that modulates the complex amplitude of the Airy disk along one direction. While coronagraphs applying the complex amplitude mask can achieve the theoretical limit performance for any arbitrary pupils, the focal plane mask severely limits the bandwidth. Here, focusing on the fact that the focal-plane mask modulates the complex amplitude along one direction, we noticed that the mask can be optimized for each spectral element generated by a spectrograph. We combine the fourth-order coronagraph with two spectrographs to produce a stellar spectrum on the focal plane and reconstruct a white pupil on the Lyot stop. Based on the wavefront analysis of an optical design applying an Offner-type imaging spectrograph, we found that the achievable contrast of this concept is 10^{-10} at 1.2 - 1.5 times the diffraction limit over the wavelength range of 650 - 750 nm for the entrance pupil of the LUVOIR telescope. Thus, this coronagraph concept could bring new habitable planet candidates not only around G- and K-type stars beyond 20 - 30 pc but also around very nearby M-type stars. This approach potentially promotes the characterization of the atmospheres of nearby terrestrial planets with future on- and off-axis segmented large telescopes.
We present a new algorithm designed to improve the signal to noise ratio (SNR) of point and extended source detections in direct imaging data. The novel part of our method is that it finds the linear combination of the science images that best match counterpart images with signal removed from suspected source regions. The algorithm, based on the Locally Optimized Combination of Images (LOCI) method, is called Matched LOCI or MLOCI. We show using data obtained with the Gemini Planet Imager (GPI) and Near-Infrared Coronagraphic Imager (NICI) that the new algorithm can improve the SNR of point source detections by 30-400% over past methods. We also find no increase in false detections rates. No prior knowledge of candidate companion locations is required to use MLOCI. While non-blind applications may yield linear combinations of science images which seem to increase the SNR of true sources by a factor > 2, they can also yield false detections at high rates. This is a potential pitfall when trying to confirm marginal detections or to re-detect point sources found in previous epochs. Our findings are relevant to any method where the coefficients of the linear combination are considered tunable, e.g. LOCI and Principal Component Analysis (PCA). Thus we recommend that false detection rates be analyzed when using these techniques.
The James Webb Space Telescope (JWST), currently scheduled to launch in 2021, will dramatically advance our understanding of exoplanetary systems with its ability to directly image and characterise planetary-mass companions at wide separations throug h coronagraphy. Using state-of-the-art simulations of JWST performance, in combination with the latest evolutionary models, we present the most sophisticated simulated mass sensitivity limits of JWST coronagraphy to date. In particular, we focus our efforts towards observations of members within the nearby young moving groups $beta$ Pictoris and TW Hya. These limits indicate that whilst JWST will provide little improvement towards imaging exoplanets at short separations, at wide separations the increase in sensitivity is dramatic. We predict JWST will be capable of imaging sub-Jupiter mass objects beyond ~30 au, sub-Saturn mass objects beyond ~50 au, and that beyond ~100 au, JWST will be capable of directly imaging companions as small as 0.1 $M_textrm{J}$ - at least an order of magnitude improvement over the leading ground-based instruments. Probing this unexplored parameter space will be of immediate value to modelling efforts focused on planetary formation and population synthesis. JWST will also serve as an excellent complement to ground based observatories through its unique ability to characterise previously detected companions across the near- to mid-infrared for the first time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا