ﻻ يوجد ملخص باللغة العربية
We present a new algorithm designed to improve the signal to noise ratio (SNR) of point and extended source detections in direct imaging data. The novel part of our method is that it finds the linear combination of the science images that best match counterpart images with signal removed from suspected source regions. The algorithm, based on the Locally Optimized Combination of Images (LOCI) method, is called Matched LOCI or MLOCI. We show using data obtained with the Gemini Planet Imager (GPI) and Near-Infrared Coronagraphic Imager (NICI) that the new algorithm can improve the SNR of point source detections by 30-400% over past methods. We also find no increase in false detections rates. No prior knowledge of candidate companion locations is required to use MLOCI. While non-blind applications may yield linear combinations of science images which seem to increase the SNR of true sources by a factor > 2, they can also yield false detections at high rates. This is a potential pitfall when trying to confirm marginal detections or to re-detect point sources found in previous epochs. Our findings are relevant to any method where the coefficients of the linear combination are considered tunable, e.g. LOCI and Principal Component Analysis (PCA). Thus we recommend that false detection rates be analyzed when using these techniques.
Combining high-contrast imaging with medium-resolution spectroscopy has been shown to significantly boost the direct detection of exoplanets. HARMONI, one of the first-light instruments to be mounted on ESOs ELT, will be equipped with a single-conjug
The James Webb Space Telescope (JWST), currently scheduled to launch in 2021, will dramatically advance our understanding of exoplanetary systems with its ability to directly image and characterise planetary-mass companions at wide separations throug
A planets emission spectrum contains information about atmospheric composition and structure. We compare the Bayesian Information Criterion (BIC) of blackbody fits and idealized spectral retrieval fits for the 44 planets with published eclipse measur
Direct imaging is a powerful exoplanet discovery technique that is complementary to other techniques and offers great promise in the era of 30 meter class telescopes. Space-based transit surveys have revolutionized our understanding of the frequency
Future direct imaging missions will primarily observe planets that have been previously detected, mostly via the radial velocity (RV) technique, to characterize planetary atmospheres. In the meantime, direct imaging may discover new planets within ex