ﻻ يوجد ملخص باللغة العربية
In this paper, we present MicroNet, which is an efficient convolutional neural network using extremely low computational cost (e.g. 6 MFLOPs on ImageNet classification). Such a low cost network is highly desired on edge devices, yet usually suffers from a significant performance degradation. We handle the extremely low FLOPs based upon two design principles: (a) avoiding the reduction of network width by lowering the node connectivity, and (b) compensating for the reduction of network depth by introducing more complex non-linearity per layer. Firstly, we propose Micro-Factorized convolution to factorize both pointwise and depthwise convolutions into low rank matrices for a good tradeoff between the number of channels and input/output connectivity. Secondly, we propose a new activation function, named Dynamic Shift-Max, to improve the non-linearity via maxing out multiple dynamic fusions between an input feature map and its circular channel shift. The fusions are dynamic as their parameters are adapted to the input. Building upon Micro-Factorized convolution and dynamic Shift-Max, a family of MicroNets achieve a significant performance gain over the state-of-the-art in the low FLOP regime. For instance, MicroNet-M1 achieves 61.1% top-1 accuracy on ImageNet classification with 12 MFLOPs, outperforming MobileNetV3 by 11.3%.
This paper aims at addressing the problem of substantial performance degradation at extremely low computational cost (e.g. 5M FLOPs on ImageNet classification). We found that two factors, sparse connectivity and dynamic activation function, are effec
Existing image-to-image transformation approaches primarily focus on synthesizing visually pleasing data. Generating images with correct identity labels is challenging yet much less explored. It is even more challenging to deal with image transformat
Recurrent Neural Networks (RNNs) have been widely used in sequence analysis and modeling. However, when processing high-dimensional data, RNNs typically require very large model sizes, thereby bringing a series of deployment challenges. Although vari
Human observers can learn to recognize new categories of images from a handful of examples, yet doing so with artificial ones remains an open challenge. We hypothesize that data-efficient recognition is enabled by representations which make the varia
The Low-Power Image Recognition Challenge (LPIRC, https://rebootingcomputing.ieee.org/lpirc) is an annual competition started in 2015. The competition identifies the best technologies that can classify and detect objects in images efficiently (short