ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovering Avoidable Planner Failures of Autonomous Vehicles using Counterfactual Analysis in Behaviorally Diverse Simulation

56   0   0.0 ( 0 )
 نشر من قبل Shirou Maruyama
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Automated Vehicles require exhaustive testing in simulation to detect as many safety-critical failures as possible before deployment on public roads. In this work, we focus on the core decision-making component of autonomous robots: their planning algorithm. We introduce a planner testing framework that leverages recent progress in simulating behaviorally diverse traffic participants. Using large scale search, we generate, detect, and characterize dynamic scenarios leading to collisions. In particular, we propose methods to distinguish between unavoidable and avoidable accidents, focusing especially on automatically finding planner-specific defects that must be corrected before deployment. Through experiments in complex multi-agent intersection scenarios, we show that our method can indeed find a wide range of critical planner failures.



قيم البحث

اقرأ أيضاً

Traffic simulators are important tools in autonomous driving development. While continuous progress has been made to provide developers more options for modeling various traffic participants, tuning these models to increase their behavioral diversity while maintaining quality is often very challenging. This paper introduces an easily-tunable policy generation algorithm for autonomous driving agents. The proposed algorithm balances diversity and driving skills by leveraging the representation and exploration abilities of deep reinforcement learning via a distinct policy set selector. Moreover, we present an algorithm utilizing intrinsic rewards to widen behavioral differences in the training. To provide quantitative assessments, we develop two trajectory-based evaluation metrics which measure the differences among policies and behavioral coverage. We experimentally show the effectiveness of our methods on several challenging intersection scenes.
114 - Fei Ye , Pin Wang , Ching-Yao Chan 2020
Recent advances in supervised learning and reinforcement learning have provided new opportunities to apply related methodologies to automated driving. However, there are still challenges to achieve automated driving maneuvers in dynamically changing environments. Supervised learning algorithms such as imitation learning can generalize to new environments by training on a large amount of labeled data, however, it can be often impractical or cost-prohibitive to obtain sufficient data for each new environment. Although reinforcement learning methods can mitigate this data-dependency issue by training the agent in a trial-and-error way, they still need to re-train policies from scratch when adapting to new environments. In this paper, we thus propose a meta reinforcement learning (MRL) method to improve the agents generalization capabilities to make automated lane-changing maneuvers at different traffic environments, which are formulated as different traffic congestion levels. Specifically, we train the model at light to moderate traffic densities and test it at a new heavy traffic density condition. We use both collision rate and success rate to quantify the safety and effectiveness of the proposed model. A benchmark model is developed based on a pretraining method, which uses the same network structure and training tasks as our proposed model for fair comparison. The simulation results shows that the proposed method achieves an overall success rate up to 20% higher than the benchmark model when it is generalized to the new environment of heavy traffic density. The collision rate is also reduced by up to 18% than the benchmark model. Finally, the proposed model shows more stable and efficient generalization capabilities adapting to the new environment, and it can achieve 100% successful rate and 0% collision rate with only a few steps of gradient updates.
Out-of-training-distribution (OOD) scenarios are a common challenge of learning agents at deployment, typically leading to arbitrary deductions and poorly-informed decisions. In principle, detection of and adaptation to OOD scenes can mitigate their adverse effects. In this paper, we highlight the limitations of current approaches to novel driving scenes and propose an epistemic uncertainty-aware planning method, called emph{robust imitative planning} (RIP). Our method can detect and recover from some distribution shifts, reducing the overconfident and catastrophic extrapolations in OOD scenes. If the models uncertainty is too great to suggest a safe course of action, the model can instead query the expert driver for feedback, enabling sample-efficient online adaptation, a variant of our method we term emph{adaptive robust imitative planning} (AdaRIP). Our methods outperform current state-of-the-art approaches in the nuScenes emph{prediction} challenge, but since no benchmark evaluating OOD detection and adaption currently exists to assess emph{control}, we introduce an autonomous car novel-scene benchmark, texttt{CARNOVEL}, to evaluate the robustness of driving agents to a suite of tasks with distribution shifts.
An excellent self-driving car is expected to take its passengers safely and efficiently from one place to another. However, different ways of defining safety and efficiency may significantly affect the conclusion we make. In this paper, we give forma l definitions to the safe state of a road and safe state of a vehicle using the syntax of linear temporal logic (LTL). We then propose the concept of safe driving throughput (SDT) and safe driving capacity (SDC) which measure the amount of vehicles in the safe state on a road. We analyze how SDT is affected by different factors. We show the analytic difference of SDC between the road with perception-based vehicles (PBV) and the road with cooperative-based vehicles (CBV). We claim that through proper design, the SDC of the road filled with PBVs will be upper-bounded by the SDC of the road filled with CBVs.
Model predictive control (MPC) is an effective method for controlling robotic systems, particularly autonomous aerial vehicles such as quadcopters. However, application of MPC can be computationally demanding, and typically requires estimating the st ate of the system, which can be challenging in complex, unstructured environments. Reinforcement learning can in principle forego the need for explicit state estimation and acquire a policy that directly maps sensor readings to actions, but is difficult to apply to unstable systems that are liable to fail catastrophically during training before an effective policy has been found. We propose to combine MPC with reinforcement learning in the framework of guided policy search, where MPC is used to generate data at training time, under full state observations provided by an instrumented training environment. This data is used to train a deep neural network policy, which is allowed to access only the raw observations from the vehicles onboard sensors. After training, the neural network policy can successfully control the robot without knowledge of the full state, and at a fraction of the computational cost of MPC. We evaluate our method by learning obstacle avoidance policies for a simulated quadrotor, using simulated onboard sensors and no explicit state estimation at test time.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا