ترغب بنشر مسار تعليمي؟ اضغط هنا

When invariable cross-sections change: the Electron-Ion Collider case

182   0   0.0 ( 0 )
 نشر من قبل Krzysztof Piotrzkowski
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In everyday research, it is tacitly assumed that the scattering cross-sections have fixed values for the given particle species, centre-of-mass energy, and particle polarizations. However, this assumption has been called into question after several observations of suppression of high-energy bremsstrahlung. This process will play a major role in experiments at the future Electron-Ion Collider, and we show here how variations of the bremsstrahlung cross-section can be profoundly studied there using the lateral beam displacements. In particular, we predict very strong increase of the observed cross-sections for large beam separations. We also discuss the relation of these elusive effects to other quantum phenomena occurring over macroscopic distances. In this context, spectacular and possibly useful properties of the coherent bremsstrahlung at the EIC are also evaluated.

قيم البحث

اقرأ أيضاً

The experimental results of the future electron -- ion ($e A$) collider are expected to constrain the dynamics of the strong interactions at small values of the Bjorken -- $x$ variable and large nuclei. Recently it has been suggested that Coulomb cor rections can be important in inclusive and diffractive $eA$ interactions. In this paper we present a detailed investigation of the impact of the Coulomb corrections to some of the observables that will be measured in the future $eA$ collider. In particular, we estimate the magnitude of these corrections for the charm and longitudinal cross sections in inclusive and diffractive interactions. Our results demonstrate that the Coulomb corrections for these observables are negligible, which implies that they can be used to probe the QCD dynamics.
An electron-muon collider with an asymmetric collision profile targeting multi-ab$^{-1}$ integrated luminosity is proposed. This novel collider, operating at collisions energies of e.g. 20-200 GeV, 50-1000 GeV and 100-3000 GeV, would be able to probe charged lepton flavor violation and measure Higgs boson properties precisely. The collision of an electron and muon beam leads to less physics background compared with either an electron-electron or a muon-muon collider, since electron-muon interactions proceed mostly through higher order vector boson fusion and vector boson scattering processes. The asymmetric collision profile results in collision products that are boosted towards the electron beam side, which can be exploited to reduce beam-induced background from the muon beam to a large extent. With this in mind, one can imagine a lepton collider complex, starting from colliding order 10 GeV electron and muon beams for the first time in history and to probe charged lepton flavor violation, then to be upgraded to a collider with 50-100 GeV electron and 1-3 TeV muon beams to measure Higgs properties and search for new physics, and finally to be transformed to a TeV scale muon muon collider. The cost should vary from order 100 millions to a few billion dollars, corresponding to different stages, which make the funding situation more practical.
We consider the one-parameter family of jet substructure observables known as angularities using the specific case of inclusive jets arising from photoproduction events at an Electron-Ion Collider (EIC). We perform numerical calculations at next-to-l eading logarithmic accuracy within perturbative QCD and compare our results to PYTHIA 6 predictions. Overall, we find good agreement and conclude that jet substructure observables are feasible at the EIC despite the relatively low jet transverse momentum and particle multiplicities. We investigate the size of subleading power corrections relevant at low energies within the Monte Carlo setup. In order to establish the validity of the Monte Carlo tune, we also perform comparisons to jet shape data at HERA. We further discuss detector requirements necessary for angularity measurements at an EIC, focusing on hadron calorimeter energy and spatial resolutions. Possible applications of precision jet substructure measurements at the EIC include the tuning of Monte Carlo event generators, the extraction of nonperturbative parameters and studies of cold nuclear matter effects.
We provide a comprehensive overview of transversely polarized $Lambda$ production at the future Electron-Ion Collider (EIC). In particular, we study both spontaneous transverse $Lambda$ polarization as well as the transverse spin transfer within the Transverse Momentum Dependent (TMD) factorization region. To describe spontaneous $Lambda$ polarization, we consider the contribution from the TMD Polarizing Fragmentation Function (TMD PFF). Similarly, we study the contribution of the transverse spin transfer originating from the transversity TMD fragmentation function (TMD FF). We provide projections for the statistical uncertainties in the corresponding spin observables at the future EIC. Using these statistical uncertainties, we characterize the role that the future EIC will play in constraining these distributions. We perform an impact study in the semi-inclusive deep inelastic scattering process for spontaneous $Lambda$ polarization with a proton beam. We find that the projected experimental data leads to a significant decrease in the uncertainties for the $u$ and sea TMD PFFs. Furthermore, to access the impact of the EIC on the transversity TMD FF, we perform the first extraction of the transversity TMD FF from the recent COMPASS data. We compare the statistical uncertainties of the future EIC with the theoretical uncertainties from our extraction and find that the EIC could have a significant role in constraining this distribution. Finally, we also provide projections for both spontaneous $Lambda$ polarization as well as the transverse spin transfer inside the jets in back-to-back electron-jet production at the EIC.
We study all the possible spin asymmetries that can arise in back-to-back electron-jet production, $eprightarrow e+text{jet}+X$, as well as the associated jet fragmentation process, $eprightarrow e+ text{jet} (h)+X$, in electron-proton collisions. We derive the factorization formalism for these spin asymmetries and perform the corresponding phenomenology for the kinematics relevant to the future electron ion collider. In the case of unpolarized electron-proton scattering, we also give predictions for azimuthal asymmetries for the HERA experiment. This demonstrates that electron-jet production is an outstanding process for probing unpolarized and polarized transverse momentum dependent parton distribution functions and fragmentation functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا