ترغب بنشر مسار تعليمي؟ اضغط هنا

The Magellan-TESS Survey I: Survey Description and Mid-Survey Results

83   0   0.0 ( 0 )
 نشر من قبل Johanna Teske
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

$Kepler$ revealed that roughly one-third of Sun-like stars host planets orbiting within 100 days and between the size of Earth and Neptune. How do these planets form, what are they made of, and do they represent a continuous population or multiple populations? To help address these questions, we began the Magellan-TESS Survey (MTS), which uses Magellan II/PFS to obtain radial velocity (RV) masses of 30 TESS-detected exoplanets and develops an analysis framework that connects observed planet distributions to underlying populations. In the past, small planet RV measurements have been challenging to obtain due to host star faintness and low RV semi-amplitudes, and challenging to interpret due to the potential biases in target selection and observation planning decisions. The MTS attempts to minimize these biases by focusing on bright TESS targets and employing a quantitative selection function and observing strategy. In this paper, we (1) describe our motivation and survey strategy, (2) present our first catalog of planet density constraints for 27 TESS Objects of Interest (TOIs; 22 in our population analysis sample, 12 that are members of the same systems), and (3) employ a hierarchical Bayesian model to produce preliminary constraints on the mass-radius (M-R) relation. We find that the biases causing previous M-R relations to predict fairly high masses at $1~R_oplus$ have been reduced. This work can inform more detailed studies of individual systems and offer a framework that can be applied to future RV surveys with the goal of population inferences.

قيم البحث

اقرأ أيضاً

We present the initial results of a 40 night contiguous ground-based campaign of time series photometric observations of a 1.39 sq. deg field located within the NASA Kepler mission field of view. The goal of this pre-launch survey was to search for t ransiting extrasolar planets and to provide independent variability information of stellar sources. We have gathered a data set containing light curves of 54,687 stars from which we have created a statistical sub-sample of 13,786 stars between 14< r <18.5 and have statistically examined each light curve to test for variability. We present a summary of our preliminary photometric findings including the overall level and content of stellar variability in this portion of the Kepler field and give some examples of unusual variable stars found within. We present a preliminary catalog of 2,457 candidate variable stars, of which 776 show signs of periodicity. We also present three potential exoplanet candidates, all of which should be observable in detail by the Kepler mission.
The Blanco Dark Energy Camera (DECam) Bulge survey is a Vera Rubin Observatory (LSST) pathfinder imaging survey, spanning $sim 200$ sq. deg. of the Southern Galactic bulge, $-2^circ <$b$< -13^circ$ and $-11^circ <$l$ < +11^circ$. We have employed the CTIO-4m telescope and the Dark Energy Camera (DECam) to image a contiguous $sim 200$ sq. deg. region of the relatively less reddened Southern Galactic bulge, in SDSS $u$ + Pan-STARRS$grizy$. Optical photometry with its large colour baseline will be used to investigate the age and metallicity distributions of the major structures of the bulge. Included in the survey footprint are 26 globular clusters imaged in all passbands. Over much of the bulge, we have Gaia DR2 matching astrometry to $isim 18$, deep enough to reach the faint end of the red clump. This paper provides the background, scientific case, and description of the survey. We present an array of new reddening-corrected colour-magnitude diagrams that span the extent of Southern Galactic bulge. We argue that a population of massive stars in the blue loop evolutionary phase, proposed to lie in the bulge, are instead at $sim 2$ kpc from the Sun and likely red clump giants in the old disk. A bright red clump near $(l,b)=(+8^circ,-4^circ)$ may be a feature in the foreground disk, or related to the long bar reported in earlier work. We also report the first map of the blue horizontal branch population spanning the BDBS field of regard, and our data does not confirm the reality of a number of proposed globular clusters in the bulge.
The occurrence rate of long-period giant planets around young stars is highly uncertain since it is not only governed by the protoplanetary disc structure and planet formation process, but also reflects dynamical re-structuring processes after planet formation as well as possible capture of planets not formed in-situ. Direct imaging is currently the only feasible method to detect such wide-orbit planets and constrain their occurrence rate. We carry out a large L-band high-contrast direct imaging survey for giant planets around young stars with protoplanetary or debris discs using the NACO instrument at the ESO Very Large Telescope on Cerro Paranal in Chile. We use very deep angular differential imaging observations with typically >60 deg field rotation, and employ a vector vortex coronagraph where feasible to achieve the best possible point source sensitivity down to an inner working angle of about 100mas. This paper introduces our NACO Imaging Survey for Planets around Young stars (NACO-ISPY), its goals and strategy, the target list, and data reduction scheme, and presents preliminary results from the first 2.5 survey years. We achieve a mean 5 sigma L contrast of 6.4mag at 150mas and a background limit of 16.5mag at >1.5. Our detection probability is >50% for companions with 8,M$_{rm Jup}$ at semi-major axes 80-200au. It thus compares well to the detection space of other state-of-the-art high-contrast imaging surveys. We have contributed to the characterisation of two new planets originally discovered by VLT/SPHERE, but we have not yet independently discovered new planets around any of our target stars. We report the discovery of close-in low-mass stellar companions around four young stars and show L-band scattered light images of the discs around eleven stars, six of which have never been imaged at L-band before.
234 - G.H. Heald , R.F. Pizzo , E. Orru 2015
We present the Multifrequency Snapshot Sky Survey (MSSS), the first northern-sky LOFAR imaging survey. In this introductory paper, we first describe in detail the motivation and design of the survey. Compared to previous radio surveys, MSSS is except ional due to its intrinsic multifrequency nature providing information about the spectral properties of the detected sources over more than two octaves (from 30 to 160 MHz). The broadband frequency coverage, together with the fast survey speed generated by LOFARs multibeaming capabilities, make MSSS the first survey of the sort anticipated to be carried out with the forthcoming Square Kilometre Array (SKA). Two of the sixteen frequency bands included in the survey were chosen to exactly overlap the frequency coverage of large-area Very Large Array (VLA) and Giant Metrewave Radio Telescope (GMRT) surveys at 74 MHz and 151 MHz respectively. The survey performance is illustrated within the MSSS Verification Field (MVF), a region of 100 square degrees centered at J2000 (RA,Dec)=(15h,69deg). The MSSS results from the MVF are compared with previous radio survey catalogs. We assess the flux and astrometric uncertainties in the catalog, as well as the completeness and reliability considering our source finding strategy. We determine the 90% completeness levels within the MVF to be 100 mJy at 135 MHz with 108 resolution, and 550 mJy at 50 MHz with 166 resolution. Images and catalogs for the full survey, expected to contain 150,000-200,000 sources, will be released to a public web server. We outline the plans for the ongoing production of the final survey products, and the ultimate public release of images and source catalogs.
We present an overview of, and first science results from, the Magellanic Edges Survey (MagES), an ongoing spectroscopic survey mapping the kinematics of red clump and red giant branch stars in the highly substructured periphery of the Magellanic Clo uds. In conjunction with Gaia astrometry, MagES yields a sample of ~7000 stars with individual 3D velocities that probes larger galactocentric radii than most previous studies. We outline our target selection, observation strategy, data reduction and analysis procedures, and present results for two fields in the northern outskirts ($>10^{circ}$ on-sky from the centre) of the Large Magellanic Cloud (LMC). One field, located in the vicinity of an arm-like overdensity, displays apparent signatures of perturbation away from an equilibrium disk model. This includes a large radial velocity dispersion in the LMC disk plane, and an asymmetric line-of-sight velocity distribution indicative of motions vertically out of the disk plane for some stars. The second field reveals 3D kinematics consistent with an equilibrium disk, and yields $V_{text{circ}}=87.7pm8.0$km s$^{-1}$ at a radial distance of ~10.5kpc from the LMC centre. This leads to an enclosed mass estimate for the LMC at this radius of $(1.8pm0.3)times10^{10}text{M}_{odot}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا