ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-improving Inequalities for bounded weak solutions to nonlocal double phase equations

102   0   0.0 ( 0 )
 نشر من قبل Tadele Mengesha
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove higher Sobolev regularity for bounded weak solutions to a class of nonlinear nonlocal integro-differential equations. The leading operator exhibits nonuniform growth, switching between two different fractional elliptic ``phases that are determined by the zero set of a modulating coefficient. Solutions are shown to improve both in integrability and differentiability. These results apply to operators with rough kernels and modulating coefficients. To obtain these results we adapt a particular fractional version of the Gehring lemma developed by Kuusi, Mingione, and Sire in their work ``Nonlocal self-improving properties Anal. PDE, 8(1):57--114 for the specific nonlinear setting under investigation in this manuscript.



قيم البحث

اقرأ أيضاً

In this note we prove an estimate on the level sets of a function with $(p, q)$ growth that depends on the difference quotient of a bounded weak solution to a nonlocal double phase equation. This estimate is related to a self improving property of these solutions.
Consider a bounded solution of the focusing, energy-critical wave equation that does not scatter to a linear solution. We prove that this solution converges in some weak sense, along a sequence of times and up to scaling and space translation, to a s um of solitary waves. This result is a consequence of a new general compactness/rigidity argument based on profile decomposition. We also give an application of this method to the energy-critical Schrodinger equation.
We study the existence of positive solutions for a class of double phase Dirichlet equations which have the combined effects of a singular term and of a parametric superlinear term. The differential operator of the equation is the sum of a $p$-Laplac ian and of a weighted $q$-Laplacian ($q<p$) with discontinuous weight. Using the Nehari method, we show that for all small values of the parameter $lambda>0$, the equation has at least two positive solutions.
We construct forward self-similar solutions (expanders) for the compressible Navier-Stokes equations. Some of these self-similar solutions are smooth, while others exhibit a singularity do to cavitation at the origin.
We prove global-in-time existence and uniqueness of measure solutions of a nonlocal interaction system of two species in one spatial dimension. For initial data including atomic parts we provide a notion of gradient-flow solutions in terms of the pse udo-inverses of the corresponding cumulative distribution functions, for which the system can be stated as a gradient flow on the Hilbert space $L^2(0,1)^2$ according to the classical theory by Brezis. For absolutely continuous initial data we construct solutions using a minimising movement scheme in the set of probability measures. In addition we show that the scheme preserves finiteness of the $L^m$-norms for all $min [1,+infty]$ and of the second moments. We then provide a characterisation of equilibria and prove that they are achieved (up to time subsequences) in the large time asymptotics. We conclude the paper constructing two examples of non-uniqueness of measure solutions emanating from the same (atomic) initial datum, showing that the notion of gradient flow solution is necessary to single out a unique measure solution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا