ﻻ يوجد ملخص باللغة العربية
We study the existence of positive solutions for a class of double phase Dirichlet equations which have the combined effects of a singular term and of a parametric superlinear term. The differential operator of the equation is the sum of a $p$-Laplacian and of a weighted $q$-Laplacian ($q<p$) with discontinuous weight. Using the Nehari method, we show that for all small values of the parameter $lambda>0$, the equation has at least two positive solutions.
We consider positive singular solutions of PDEs arising from double phase functionals. Exploiting a rather new version of the moving plane method originally developed by Sciunzi, we prove symmetry and monotonicity properties of such solutions.
In this paper we study quasilinear elliptic equations driven by the double phase operator and a right-hand side which has the combined effect of a singular and of a parametric term. Based on the Nehari manifold method we are going to prove the existe
We study a class of elliptic problems with homogeneous Dirichlet boundary condition and a nonlinear reaction term $f$ which is nonlocal depending on the $L^{p}$-norm of the unknown function. The nonlinearity $f$ can make the problem degenerate since
We consider a nonlinear Robin problem driven by the sum of $p$-Laplacian and $q$-Laplacian (i.e. the $(p,q)$-equation). In the reaction there are competing effects of a singular term and a parametric perturbation $lambda f(z,x)$, which is Caratheodor
In this paper we consider a Dirichlet problem driven by an anisotropic $(p,q)$-differential operator and a parametric reaction having the competing effects of a singular term and of a superlinear perturbation. We prove a bifurcation-type theorem desc