ﻻ يوجد ملخص باللغة العربية
The empirical mode decomposition (EMD) method and its variants have been extensively employed in the load and renewable forecasting literature. Using this multiresolution decomposition, time series (TS) related to the historical load and renewable generation are decomposed into several intrinsic mode functions (IMFs), which are less non-stationary and non-linear. As such, the prediction of the components can theoretically be carried out with notably higher precision. The EMD method is prone to several issues, including modal aliasing and boundary effect problems, but the TS decomposition-based load and renewable generation forecasting literature primarily focuses on comparing the performance of different decomposition approaches from the forecast accuracy standpoint; as a result, these problems have rarely been scrutinized. Underestimating these issues can lead to poor performance of the forecast model in real-time applications. This paper examines these issues and their importance in the model development stage. Using real-world data, EMD-based models are presented, and the impact of the boundary effect is illustrated.
Electric city bus gains popularity in recent years for its low greenhouse gas emission, low noise level, etc. Different from a passenger car, the weight of a city bus varies significantly with different amounts of onboard passengers, which is not wel
The availability of large datasets is crucial for the development of new power system applications and tools; unfortunately, very few are publicly and freely available. We designed an end-to-end generative framework for the creation of synthetic bus-
Accurate load prediction is an effective way to reduce power system operation costs. Traditionally, the mean square error (MSE) is a common-used loss function to guide the training of an accurate load forecasting model. However, the MSE loss function
Many applications require the ability to judge uncertainty of time-series forecasts. Uncertainty is often specified as point-wise error bars around a mean or median forecast. Due to temporal dependencies, such a method obscures some information. We w
Prediction for high dimensional time series is a challenging task due to the curse of dimensionality problem. Classical parametric models like ARIMA or VAR require strong modeling assumptions and time stationarity and are often overparametrized. This