ﻻ يوجد ملخص باللغة العربية
This paper is concerned with ranking many pre-trained deep neural networks (DNNs), called checkpoints, for the transfer learning to a downstream task. Thanks to the broad use of DNNs, we may easily collect hundreds of checkpoints from various sources. Which of them transfers the best to our downstream task of interest? Striving to answer this question thoroughly, we establish a neural checkpoint ranking benchmark (NeuCRaB) and study some intuitive ranking measures. These measures are generic, applying to the checkpoints of different output types without knowing how the checkpoints are pre-trained on which dataset. They also incur low computation cost, making them practically meaningful. Our results suggest that the linear separability of the features extracted by the checkpoints is a strong indicator of transferability. We also arrive at a new ranking measure, NLEEP, which gives rise to the best performance in the experiments.
Graph neural networks (GNNs) have been successfully applied in many structured data domains, with applications ranging from molecular property prediction to the analysis of social networks. Motivated by the broad applicability of GNNs, we propose the
Not all data in a typical training set help with generalization; some samples can be overly ambiguous or outrightly mislabeled. This paper introduces a new method to identify such samples and mitigate their impact when training neural networks. At th
Inner product-based convolution has been the founding stone of convolutional neural networks (CNNs), enabling end-to-end learning of visual representation. By generalizing inner product with a bilinear matrix, we propose the neural similarity which s
In this work, we analyze the role of the network architecture in shaping the inductive bias of deep classifiers. To that end, we start by focusing on a very simple problem, i.e., classifying a class of linearly separable distributions, and show that,
Recently, we have witnessed the bloom of neural ranking models in the information retrieval (IR) field. So far, much effort has been devoted to developing effective neural ranking models that can generalize well on new data. There has been less atten