ﻻ يوجد ملخص باللغة العربية
Most state machine replication protocols are either based on the 40-years-old Byzantine Fault Tolerance (BFT) theory or the more recent Nakamotos longest chain design. Longest chain protocols, designed originally in the Proof-of-Work (PoW) setting, are available under dynamic participation, but has probabilistic confirmation with long latency dependent on the security parameter. BFT protocols, designed for the permissioned setting, has fast deterministic confirmation, but assume a fixed number of nodes always online. We present a new construction which combines a longest chain protocol and a BFT protocol to get the best of both worlds. Using this construction, we design TaiJi, the first dynamically available PoW protocol which has almost deterministic confirmation with latency independent of the security parameter. In contrast to previous hybrid approaches which use a single longest chain to sample participants to run a BFT protocol, our native PoW construction uses many independent longest chains to sample propose actions and vote actions for the BFT protocol. This design enables TaiJi to inherit the full dynamic availability of Bitcoin, as well as its full unpredictability, making it secure against fully-adaptive adversaries with up to 50% of online hash power.
In the field of distributed consensus and blockchains, the synchronous communication model assumes that all messages between honest parties are delayed at most by a known constant $Delta$. Recent literature establishes that the longest-chain blockcha
Optimistic asynchronous atomic broadcast was proposed to improve the performance of asynchronous protocols while maintaining their liveness in unstable networks (Kursawe-Shoup, 2002; Ramasamy-Cachin, 2005). They used a faster deterministic protocol i
The Nakamoto longest chain protocol is remarkably simple and has been proven to provide security against any adversary with less than 50% of the total hashing power. Proof-of-stake (PoS) protocols are an energy efficient alternative; however existing
Byzantine fault tolerant (BFT) consensus protocols are traditionally developed to support reliable distributed computing. For applications where the protocol participants are economic agents, recent works highlighted the importance of accountability:
An important feature of Proof-of-Work (PoW) blockchains is full dynamic availability, allowing miners to go online and offline while requiring only 50% of the online miners to be honest. Existing Proof-of-stake (PoS), Proof-of-Space and related pro