ترغب بنشر مسار تعليمي؟ اضغط هنا

The Availability-Accountability Dilemma and its Resolution via Accountability Gadgets

142   0   0.0 ( 0 )
 نشر من قبل Joachim Neu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Byzantine fault tolerant (BFT) consensus protocols are traditionally developed to support reliable distributed computing. For applications where the protocol participants are economic agents, recent works highlighted the importance of accountability: the ability to identify participants who provably violate the protocol. We propose to evaluate the security of an accountable protocol in terms of its liveness resilience, the minimum number of Byzantine nodes when liveness is violated, and its accountable safety resilience, the minimum number of accountable Byzantine nodes when safety is violated. We characterize the optimal tradeoffs between these two resiliences in different network environments, and identify an availability-accountability dilemma: in an environment with dynamic participation, no protocol can simultaneously be accountably-safe and live. We provide a resolution to this dilemma by constructing an optimally-resilient accountability gadget to checkpoint a longest chain protocol, such that the full ledger is live under dynamic participation and the checkpointed prefix ledger is accountable. Our accountability gadget construction is black-box and can use any BFT protocol which is accountable under static participation. Using HotStuff as the black box, we implemented our construction as a protocol for the Ethereum 2.0 beacon chain, and our Internet-scale experiments with more than 4000 nodes show that the protocol can achieve the required scalability and has better latency than the current solution Gasper, while having the advantage of being provably secure. To contrast, we demonstrate a new attack on Gasper.

قيم البحث

اقرأ أيضاً

The CAP theorem says that no blockchain can be live under dynamic participation and safe under temporary network partitions. To resolve this availability-finality dilemma, we formulate a new class of flexible consensus protocols, ebb-and-flow protoco ls, which support a full dynamically available ledger in conjunction with a finalized prefix ledger. The finalized ledger falls behind the full ledger when the network partitions but catches up when the network heals. Gasper, the current candidate protocol for Ethereum 2.0s beacon chain, combines the finality gadget Casper FFG with the LMD GHOST fork choice rule and aims to achieve this property. However, we discovered an attack in the standard synchronous network model, highlighting a general difficulty with existing finality-gadget-based designs. We present a construction of provably secure ebb-and-flow protocols with optimal resilience. Nodes run an off-the-shelf dynamically available protocol, take snapshots of the growing available ledger, and input them into a separate off-the-shelf BFT protocol to finalize a prefix. We explore connections with flexible BFT and improve upon the state-of-the-art for that problem.
We describe and implement a policy language. In our system, agents can distribute data along with usage policies in a decentralized architecture. Our language supports the specification of conditions and obligations, and also the possibility to refin e policies. In our framework, the compliance with usage policies is not actively enforced. However, agents are accountable for their actions, and may be audited by an authority requiring justifications.
Distributed collaborative learning (DCL) paradigms enable building joint machine learning models from distrusting multi-party participants. Data confidentiality is guaranteed by retaining private training data on each participants local infrastructur e. However, this approach to achieving data confidentiality makes todays DCL designs fundamentally vulnerable to data poisoning and backdoor attacks. It also limits DCLs model accountability, which is key to backtracking the responsible bad training data instances/contributors. In this paper, we introduce CALTRAIN, a Trusted Execution Environment (TEE) based centralized multi-party collaborative learning system that simultaneously achieves data confidentiality and model accountability. CALTRAIN enforces isolated computation on centrally aggregated training data to guarantee data confidentiality. To support building accountable learning models, we securely maintain the links between training instances and their corresponding contributors. Our evaluation shows that the models generated from CALTRAIN can achieve the same prediction accuracy when compared to the models trained in non-protected environments. We also demonstrate that when malicious training participants tend to implant backdoors during model training, CALTRAIN can accurately and precisely discover the poisoned and mislabeled training data that lead to the runtime mispredictions.
This document introduces XinFin DPoS 2.0, the proposed next generation decentralized consensus engine for the XinFin XDC Network. Built upon the most advanced BFT consensus protocol, this upgrade will empower the XDC Network with military-grade secur ity and performance while consuming extremely low resources, and will be fully backwards-compatible in terms of APIs. It will also pave the road to the future evolution of the XDC Network. The core invention is the holistic integration of accountability and forensics in blockchains: the ability to identify malicious actors with cryptographic integrity directly from the blockchain records, incorporating the latest peer-reviewed academic research with state of the art engineering designs and implementation plans.
Bells theorem is a fundamental theorem in physics concerning the incompatibility between some correlations predicted by quantum theory and a large class of physical theories. In this paper, we introduce the hypothesis of accountability, which demands that it is possible to explain the correlations of the data collected in many runs of a Bell experiment in terms of what happens in each single run. Under this assumption, and making use of a recent result by Colbeck and Renner [Nat. Commun. 2, 411 (2011)], we then show that any nontrivial account of these correlations in the form of an extension of quantum theory must violate parameter independence. Moreover, we analyze the violation of outcome independence of quantum mechanics and show that it is also a manifestation of nonlocality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا