ﻻ يوجد ملخص باللغة العربية
Let $sum_{d|n}$ denote sum over divisors of a positive integer $n$, and $t_{r}(n)$ denote the number of representations of $n$ as a sum of $r$ triangular numbers. Then we prove that $$ sum_{d|n}frac{1+2,(-1)^{d}}{d}=sum_{r=1}^{n}frac{(-1)^{r}}{r}, binom{n}{r}, t_{r}(n) $$ using a result of Ono, Robbins and Wahl.
In this paper we give a definition of cyclic orthonormal generators (cogs) in R^N. We give a general canonical form for their expression. Further, we give an explicit formula for computing the canonical form of any given cog.
We present a common ground for infinite sums, unordered sums, Riemann integrals, arc length and some generalized means. It is based on extending functions on finite sets using Hausdorff metric in a natural way.
We propose a new class of algebraic structure named as emph{$(m,n)$-semihyperring} which is a generalization of usual emph{semihyperring}. We define the basic properties of $(m,n)$-semihyperring like identity elements, weak distributive $(m,n)$-semih
We present in this work a heuristic expression for the density of prime numbers. Our expression leads to results which possesses approximately the same precision of the Riemanns function in the domain that goes from 2 to 1010 at least. Instead of usi
The proofs that the real numbers are denumerable will be shown, i.e., that there exists one-to-one correspondence between the natural numbers $N$ and the real numbers $Re$. The general element of the sequence that contains all real numbers will be ex