ﻻ يوجد ملخص باللغة العربية
In this paper we give a definition of cyclic orthonormal generators (cogs) in R^N. We give a general canonical form for their expression. Further, we give an explicit formula for computing the canonical form of any given cog.
In this paper we tried a different approach to work out the integrals of e^(x^n) and e^(-x^n). Integration by parts shows a nice pattern which can be reduced to a form of series. We have shown both the indefinite and definite integrals of the functio
Let $sum_{d|n}$ denote sum over divisors of a positive integer $n$, and $t_{r}(n)$ denote the number of representations of $n$ as a sum of $r$ triangular numbers. Then we prove that $$ sum_{d|n}frac{1+2,(-1)^{d}}{d}=sum_{r=1}^{n}frac{(-1)^{r}}{r}, bi
There is error in (2.1). I am very sorry for inconvenience.
In this paper, some sufficient conditions for the differentiability of the $n$-variable real-valued function are obtained, which are given based on the differentiability of the $n-1$-variable real-valued function and are weaker than classical conditions.
Continuous formal deformations of the Poisson superbracket defined on compactly supported smooth functions on R^2 taking values in a Grassmann algebra with N generating elements are described up to an equivalence transformation for N e 2.