ترغب بنشر مسار تعليمي؟ اضغط هنا

Optics Design of Vertical Excursion Fixed-Field Alternating Gradient Accelerators

64   0   0.0 ( 0 )
 نشر من قبل Shinji Machida
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Vertical excursion fixed-field alternating gradient accelerators can be designed with tunes that are invariant with respect to momentum and trajectories that are scaled images of each other displaced only in the vertical direction. This is possible using guiding fields that have a vertical exponential increase, with a skew quadrupole component in the magnet body and a solenoid component at the magnet ends. Because of the coupling this introduces, orbit and optics calculations and optimisation of parameters need to be performed numerically. In this paper, idealised magnetic fields are calculated from first principles, taking into account end fields. The parameter dependence of the optics and the dynamic aperture of the ring are calculated for the example of a ring with an approximately 25 m circumference that accelerates proton beams from 3 MeV to 12 MeV. The paper reports for the first time the design of such an accelerator lattice using tools specifically devised to analyse transverse coupled optics without the need for approximations.



قيم البحث

اقرأ أيضاً

Polar molecules, in strong-field seeking states, can be transported and focused by an alternating sequence of electric field gradients that focus in one transverse direction while defocusing in the other. We show, by calculation and numerical simulat ion, how one may greatly improve the alternating gradient transport and focusing of molecules. We use a new optimized multipole lens design, a FODO-lattice beam transport line, and lenses to match the beam transport line to the beam source and to the final focus. We derive analytic expressions for the potentials, fields, and gradients that may be used to design these lenses. We describe a simple lens optimization procedure and derive the equations of motion for tracking molecules through a beam transport line. As an example, we model a straight beamline that transports a 560 m/s jet-source beam of methyl fluoride15 m from its source and focuses it to 2 mm diameter. We calculate the beam transport line acceptance and beam survival, for a beam with a velocity spread, and estimate the transmitted intensity for specified source conditions. Possible applications are discussed.
Accelerator-based light sources such as storage rings and free-electron lasers use relativistic electron beams to produce intense radiation over a wide spectral range for fundamental research in physics, chemistry, materials science, biology and medi cine. More than a dozen such sources operate worldwide, and new sources are being built to deliver radiation that meets with the ever increasing sophistication and depth of new research. Even so, conventional accelerator techniques often cannot keep pace with new demands and, thus, new approaches continue to emerge. In this article, we review a variety of recently developed and promising techniques that rely on lasers to manipulate and rearrange the electron distribution in order to tailor the properties of the radiation. Basic theories of electron-laser interactions, techniques to create micro- and nano-structures in electron beams, and techniques to produce radiation with customizable waveforms are reviewed. We overview laser-based techniques for the generation of fully coherent x-rays, mode-locked x-ray pulse trains, light with orbital angular momentum, and attosecond or even zeptosecond long coherent pulses in free-electron lasers. Several methods to generate femtosecond pulses in storage rings are also discussed. Additionally, we describe various schemes designed to enhance the performance of light sources through precision beam preparation including beam conditioning, laser heating, emittance exchange, and various laser-based diagnostics. Together these techniques represent a new emerging concept of beam by design in modern accelerators, which is the primary focus of this article
Laser powered dielectric structures achieve high-gradient particle acceleration by taking advantage of modern laser technology capable of producing electric fields in excess of 10GV/m. These fields can drive the bulk dielectric beyond its linear resp onse, and break the phase synchronicity between the accelerating field and the electrons. We show how control of the pulse dispersion can be used to compensate the effect of self-phase modulation and maximize the energy gain in the laser accelerator.In our experiment, a high brightness 8MeV e-beam is used to probe accelerating fields of 1.8GV/m in a grating-reset dielectric structure illuminated by a 45fs laser pulse with a fluence of 0.7J/cm$^2$.
The European XFEL is a new research facility currently under construction at DESY in the Hamburg area in Germany. From 2015 on, it will generate extremely intense X-ray flashes that will be used by researchers from all over the world. The superconduc ting XFEL linear accelerator consists of 100 accelerator modules with more than 800 RF-cavities inside. The accelerator modules, superconducting magnets and cavities will be tested in the accelerator module test facility (AMTF). This paper gives an overview of the design parameters and the commissioning of the vertical insert, used in two cryostats (XATC) of the AMTF-hall. The Insert serves as a holder for 4 nine-cell cavities. This gives the possibility to cool down 4 cavities to 2K in parallel and, consequently, to reduce the testing time. The following RF measurement, selected as quality check, will be done separately for each cavity. Afterwards the cavities will be warmed up again and will be sent to the accelerator module assembly.
The use of nonlinear lattices with large betatron tune spreads can increase instability and space charge thresholds due to improved Landau damping. Unfortunately, the majority of nonlinear accelerator lattices turn out to be nonintegrable, producing chaotic motion and a complex network of stable and unstable resonances. Recent advances in finding the integrable nonlinear accelerator lattices have led to a proposal to construct at Fermilab a test accelerator with strong nonlinear focusing which avoids resonances and chaotic particle motion. This presentation will outline the main challenges, theoretical design solutions and construction status of the Integrable Optics Test Accelerator underway at Fermilab.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا